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NUMERICAL LINEAR STABILITY ANALYSIS OF A 
THERMOCAPILLARY-DRIVEN LIQUID BRIDGE WITH 

MAGNETIC STABILIZATION

YUE HUANG AND BRENT C. HOUCHENS

1. Introduction

Float-zone growth processes are methods to grow crystals with the highest purity. A cross-sectional 

region of a polycrystalline ingot is melted by lateral heating, for example, in an optical heating furnace 

[Eyer et al. 1979]. This molten region holds itself from spilling by surface tension, forming a liquid 

bridge between the feed rod and the grown crystal. As the liquid bridge moves through the furnace, the 

melt resolidifies as a single crystal if properly controlled. Throughout the process the melt never 

contacts a crucible, and therefore the grown crystal has very low oxygen contamination. Sufficient heat 

input is required to avoid the onset of morphological instability at the solidification front [Davis 1993]. 

The thermocapillary effect at the free surface drives a flow within the liquid bridge. This flow is 

susceptible to instabilities, which result in structural imperfections in grown crystals and uneven dopant 

distribution for doped crystals [Eyer et al. 1985; Cröll et al. 1994]. Therefore stabilization techniques are 

typically used in crystal growth practice. For example, two silicon crystal rods were grown in a double 

ellipsoidal mirror furnace with rod rotation in Spacelab-1 [Martinez and Eyer 1986]. A review of liquid 

bridge stabilization strategies can be found in [Lappa 2005b]. One strategy for molten semiconductors, 

which have properties similar to liquid metals, is to apply external magnetic fields to control flow 

A B S T R A C T

A full-zone model of a thermocapillary-driven liquid bridge exposed to a steady, axial magnetic field is 

investigated using a global spectral collocation method for low-Prandtl number (Pr) fluids. Flow insta

bilities are identified using normal-mode linear stability analyses. This work presents several numerical 

issues that commonly arise when using spectral collocation methods and linear stability analyses in the 

solution of a wide range of partial differential equations. In particular, effects such as discontinuous 

boundary condition regularization, identification of spurious eigenvalues, and the use of pseudospectra 

to investigate the robustness of the stability analysis are addressed. Physically, this work provides sim

ulations in the practical range of experimentally utilized magnetic field stabilization in optically heated 

float-zone crystal growth. A second-order vorticity transport formulation enables modeling of the liquid 

bridge up to these intermediate magnetic field strength ranges, measured by the Hartmann number (Ha). 

The thermocapillary driving and magnetic stabilization effects are observed up to Ha = 500 for Pr = 

0.001 and up to Ha = 300 for Pr = 0.02. Prandtl number effects on temperature and flow fields are 

investigated within Pr ∈ (10−12 , 0.0667) and indicate that Pr = 0.001 is a good representation of the base 

state in the Pr → 0 limit, at least up to Ha = 300. 
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The optically heated liquid bridge has been studied by the crystal growth community using simpler 

models such as the half-zone model, resembling one half of a liquid bridge, and the full-zone model. The 

liquid bridge has a barrel shape in microgravity and a sagged shape under terrestrial conditions. These 

free-surface shapes have been simulated in both half-zone [Morthland and Walker 1996] and full-zone 

[Lappa 2004] models, respectively. In [Nakamura et al. 1998], m = 1 and 2 oscillating instability modes 

were observed in molten silicon in an optically heated half-zone configuration on the TR-IA rocket. The 

hydrodynamic and hydrothermal instability mechanisms of low and high-Pr liquid bridges, respectively, 

have been confirmed in [Chen et al. 1997; Lappa 2005a; Bouizi et al. 2007] and elsewhere. Lan and Yeh 

[2004; 2005] performed quite complete full-zone modeling involving three-dimensional radiation, a 

deformable free surface and melting interfaces, dopant distribution, and axial and transverse magnetic 

damping. Prange et al. [1999] studied the half-zone instability with axial magnetic field stabilization up 

to Ha = 25. 

This work presents a full-zone liquid bridge model with magnetic stabilization, with a focus on the 

numerical methods and analyses utilized. The goals of this paper are twofold: first, to provide insight 

into magnetohydrodynamic control in the liquid bridge problem which will aid in the design of floatzone 

crystal growth experiments and, second, to demonstrate through example the treatment of several 

common numerical issues, such as regularization, identification of spurious eigenvalues, and sensitivity 

of linear stability analyses as quantified by pseudospectral analysis, techniques relevant to a wide array 

of numerical analysis studies. 

2. Problem description

2A. Full-zone model of a liquid bridge. A liquid bridge of a molten semiconductor is bounded by top and 

bottom solid boundaries (Figure 1). Both boundaries are assumed flat, electrically insulating, and at the 

melting temperature T*0 of the semiconductor. The lateral cylindrical free surface is assumed 

nondeformable due to high surface tension and the microgravity environment. The diameter and height 
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Figure 1. Full-zone model of a liquid bridge with a parabolic heat flux at the free surface and an 

axially applied magnetic field.

of the liquid bridge are 2R* and 2bR* respectively. The aspect ratio b is held at 1 in this paper. An 

axisymmetric heat flux is applied at the lateral free surface. This heat flux is approximated with a 

maximum intensity q* at the equatorial plane and parabolic reduction to zero at the top and bottom 

boundaries. The thermal conductivity of the melt is k*. A constant, uniform external magnetic field is 

applied in the axial direction with a magnetic flux density of B* = B*oeˆz. Variables with an asterisk 

superscript are dimensional quantities.

The characteristic length, temperature, and magnetic flux density are 

.

,

The Hartmann number Ha is proportional to the magnetic flux density B*o and measures the ratio of the 

electromagnetic body forces to the viscous forces. The Prandtl number Pr indicates the relative
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The full-zone is a more realistic liquid bridge model for optically heated float-zone crystal growth as 

compared to the half-zone, though both capture much of the primary physics of the flow field. In the full-

zone model the heat flux is input on the free surface, rather than from a hot bottom wall, as in the half-

zone. Also, no constraint is enforced at the midplane in the full-zone. Thus the temperature varies at the 

midplane (see Figures 4a and 4b) and flow is allowed to be nonzero and even cross the midplane (see 

Figure 6). Note that in this work axial symmetry is assumed in the base flow for computational 

efficiency, but no boundary condition is imposed at the midplane. Therefore the full-zone character is 

maintained. 

In contrast, the half-zone intends to model one half of the liquid bridge. A no-slip, no-penetration solid 

boundary at fixed temperature is enforced in the half-zone, at the location of the midplane. A thermally 

insulating free surface is commonly assumed. The half-zone is driven by the temperature difference 

between two bounding disks. Despite these simplifications, the half-zone is an effective liquid bridge 

model for both experimental and computational studies. However, the onset of flow instabilities tend to 

be delayed in the half-zone by the presence of the no-slip boundary that replaces the midplane and 

removes momentum from the flow through viscous effects. An extensive comparison of the half-zone 

and full-zone models can be found in [Houchens and Walker 2005]. 

 

2B. Thermocapillary-driven flow. The temperature gradient at the free surface produces surface tension 

differences, called the thermocapillary or Marangoni effect. The surface tension γ* drives a flow within 

the liquid bridge, and is approximated as a linearly decreasing function of temperature: 
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3. Steady axisymmetric base flow

(vθ0 = 0), and exhibits axial symmetry about the equatorial plane. For this base flow state the governing 

equations simplify to
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is a regularization function to remove the ∂vz0/∂r singularity at (r,z) = (1, ±b) between the thermocapil

lary driving force on the free surface and the no-penetration conditions at the top and bottom boundaries.

Base flow variables are denoted with subscript 0 to differentiate them from perturbation variables(which 

have subscript 1).

3B. Second-order vorticity transport formulation. In [Houchens and Walker 2005], a fourth-order 

stream function formulation was introduced for the base flow problem, with the stream function ψ 

defined as 

The resulting equations were discretized using a global spectral collocation method with Chebyshev 

basis functions. In this formulation, the momentum equations can be combined into a single fourth-order 

partial differential equation governing ψ. Unfortunately, the coefficients on the derivatives of the Cheby

shev functions increase dramatically as the derivative order increases. From a numerical standpoint, the 

combination of order-one coefficients on the first and second derivatives and huge third and fourth 

derivatives in one equation causes numerical difficulties. This imbalance in fact imposes a constraint on 

the maximum viable grid resolution in obtaining converged solutions. This consequently limited the 

maximum magnetic stabilization intensity (Ha) that could be studied [Houchens and Walker 2001].

Reducing the maximum Chebyshev derivative order improves the numerical performance, at the ex

pense of more dependent variables. In this work, this is achieved by introducing the azimuthal vorticity 

ωθ into the formulation as 



The base flow variables are represented with Chebyshev polynomials:

where Tn® = cos(n arccos r) are the Chebyshev basis functions. As a result of radial symmetry (axisym

metry), only even Chebyshev terms are utilized in r, with the overall radial symmetry set by the multiple 

of r in front of the representation. This corresponds to the behaviors as r → 0, which were investigated 

for ψ, ωθ , and T using the Frobenius method. Moreover, due to the axial symmetry, only even or odd 

Chebyshev terms are nonzero in z. Taking advantage of axisymmetry and the axial symmetry, the unique 

computational domain for the base flow is reduced to r ∈ (0, 1), z ∈ (0, b) at θ = 0 and is discretized using 

Gauss–Lobatto collocation grids (NRF × NZ F for the flow field and NRT × NZ T for the temperature 

field) given, for example, by

These grids weight the finest resolution toward the free surface and the solid boundary where it is most 

needed.

At r = 0 or z = 0, the governing equations (3-10) and (3-11) and the first two boundary conditions in (3-
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13) (at z = 0) reduce to 0 = 0. To impose constraints at r = 0 and z = 0, the first nonzero leading order of 

these equations are applied. For example, after substituting the representations for ψ and ωθ from (3-15) 

and (3-16), respectively, (3-10) becomes

It was found that the constraints above at r = 0 and z = 0 enhance the accuracy of the solution greatly with 

minimal additional computational cost. Therefore these constraints were applied in all cases presented 

here. At the top boundary z = b, boundary conditions were applied using orthogonality, hence special 

treatment was not required at (r,z) = (0, b)

The ReFZ is ramped up starting from ReFZ < 1, where the flow field is almost stagnant, until the desired 

value is obtained. Solutions for lower ReFZ cases become initial guesses for larger ReFZ cases. 

The governing equations and boundary conditions are solved using the Newton–Raphson iterative 

method.LU decomposition and back substitution is performed using the DGESV routine [Intel 2008] in 

LAPACK [Anderson et al. 1999]. The base flow code is written in Fortran 90.

3C. Magnetic damping. When exposed to an axial static magnetic field, radial and azimuthal flow mo

tions are damped by the electromagnetic body force. Figure 3 demonstrates this magnetic damping 

effect by varying the Hartmann number Ha while keeping the material properties (Pr) and the heat input 

(ReFZ) fixed.
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Figure 3. Magnetic damping effect on the stream function contours (Pr = 0.02, ReFZ =21,914.8).

Without magnetic damping (Ha = 0), a primary circulation “cell” forms due to the thermocapillary 

effect. Flow circulates counterclockwise throughout r ∈ (0, 1) in the upper half of the liquid bridge. Small 

secondary recirculation cells also emerge in the interior due to strong convection. At Ha = 25, the 

electromagnetic effect weakens the primary circulation cell and confines it within r ∈ (0.5, 1). When 

exposed to a magnetic field in the +z direction, radial inflow (in the −r direction) near the (r,z) = (1, 1) 

corner induces electric current in the +θ direction (into the page). This electric current leads to the 

Lorentz force exerted in the +r direction, which opposes the inflow moving in the −r direction. By 

continuity, the flow is turned downward and then circulates back as a loop. 

As the magnetic field further intensifies, the primary circulation cell is confined more dramatically near 

the free surface, and more circulation cells develop in the interior. The most significant flow is always 

within the primary circulation cell. Extremum stream function values within each cell show that the 

interior of the liquid bridge is effectively stagnant, which is ideal for crystal growth from a melt.

Note that in this example ReFZ is chosen at 21,914.8, which is near the critical value for Pr = 0.02 at Ha = 

50. This ReFZ value is well above the critical instability values for Ha = 0 and Ha = 25; therefore the 

actual flow would be perturbed from the base flow states shown here. 
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Figure 4. Prandtl number effect on the temperature field and the flow field (Ha = 50, ReFZ 

=21,914.8).

3D. Prandtl number effect. The crystal growth community has frequently studied the effect of Prandtl 

number Pr, representing different physical materials, in various liquid bridges, typically without 

magnetic stabilization. For example, Kasperski et al. [2000] first investigated the different 

characteristics of low and high-Pr full-zone instabilities. Levenstam et al. [2001] performed a fairly 

continuous Pr study using the half-zone with a focus on the intermediate Pr range which bridges the gap 

between the low and high-Pr regimes. Bouizi et al. [2007] presented full-zone instabilities over a wide 

range of Pr ∈ (0.001, 100) by three-dimensional nonlinear spectral computations. 

For a liquid bridge with small Pr, conduction is dominant over convective heat transfer. In the limit of Pr 

→ 0, the temperature field is decoupled from the flow field. For example, the isotherms for Pr = 10−6 

(Figure 4a) indicate pure conduction. In this case Tmax = 1.0633 remains constant as the magnetic field 

varied over Ha ∈ (0, 300) (not shown). Tmax is always located at (r,z) = (1, 0), the location of maximum

heat flux.
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As Pr increases, Tmax is reduced due to convective heat transfer (at a fixed Ha) assisting conduction in 

distributing the thermal energy throughout the domain. At Pr = 0.0667, isotherms are bent by convection 

(Figure 4b). Notice that the T = 0.5 curve shifts by a large amount compared to the case of Pr = 10−6.

Compared to the temperature distribution, the Prandtl number has a less significant impact on the flow 

field with magnetic stabilization. In moving from Pr = 10−6 to Pr = 0.0667, the flow is weakened (see 

Figures 4c and 4d) due to the weaker thermocapillary driving force resulting from the smaller 

temperature gradient at the free surface. Otherwise, the cell thicknesses and locations of local extrema 

change little, primarily because the electromagnetic damping, proportional to the radial flow velocity, 

increases as the flow intensifies.

The primary flow instabilities for small-Pr liquid bridges with magnetic stabilization are hydrodynamic 

in nature. The first instability for Pr < 0.4 is characterized by stationary disturbances [Bouizi et al. 2007]. 

Within this range, [Houchens and Walker 2005] further suggested three subregimes with different axial 

symmetries of the perturbations, which were confirmed in [Bouizi et al. 2007], both in full-zone 

geometries. In [Levenstam and Amberg 1995; Leypoldt et al. 2000] the secondary instability was found 

to be three-dimensional and oscillatory in the half-zone. 

For high-Pr liquid bridges, convective heat transfer is dominant over conduction and the instability 

mechanism is hydrothermal. The base flow first transitions to oscillatory perturbations (see [Leypoldt et 

al. 2000], for example). Due to strong thermal convection at high Pr, isotherms are dramatically 

distorted such that a large temperature gradient exists at the free surface near the top and bottom bound

aries. In reality, the melt-solid interfaces may deform significantly from the assumed rigid plane due to 

this strong thermal convection. To accurately resolve high-Pr liquid bridges, more realistic boundary 

conditions are needed, hence this work is limited to low-Pr cases. 

For a fixed Pr > 0 (with ReFZ fixed as in Figure 5), increasing Ha continuously confines the flow into a 

narrower region near the free surface and reduces the effectiveness of convective heat transfer into the 

interior. Thus Tmax increases, which enhances the thermocapillary driving effect. Therefore the flow 

Figure 5. Effects of Prandtl number and magnetic damping on viscous Reynolds number and 
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nondimensional kinetic energy (ReFZ =21,914.8 fixed in all cases).

velocity increases at the free surface, but this is limited to a narrow cell due to magnetic damping. 

Reviscous also increases proportionally to the maximum nondimensional velocity vmax which always 

occurs near (r,z) = (1, b). This explains the initial increase of Reviscous with Ha for Pr ≥ 0.02 in Figure 

5a. Eventually magnetic damping is sufficiently large that vmax is reduced, even though Tmax continues 

to increase and approach 1.0633 (the value in the limit of no convective heat transfer). Also observe that 

Reviscous decreases monotonically with increasing Ha for Pr ≤ 0.001. For Pr ≤ 0.001 the temperature 

field is effectively decoupled from the flow field and Tmax remains constant as Ha increases. Therefore 

increasing Ha does not enhance the thermocapillary effect. Pr = 0.01 marks the division between these 

two trends. 

The nondimensional kinetic energy, computed as the integral of velocity squared over the domain, drops 

quickly as Ha increases (see Figure 5b), which demonstrates the magnetic damping effect. For a fixed 

ReFZ (� q*R*/k*, the fact that kinetic energy also drops as Pr (= µ*c*p /k*) increases can   explained as 

follows. Assume that the dynamic viscosity µ* , specific heat c*p , and radius R* remain unchanged. 

Increasing Pr then corresponds to decreasing the thermal conductivity k* and consequently a reduction 

in maximum heat flux q* (to maintain a constant ReFZ). Therefore with less thermocapillary driving 

force, kinetic energy within the melt is reduced as Pr increases. Also note that the Pr = 0.001, Pr = 10−6 

and Pr = 10−12 curves are virtually indistinguishable, which indicates that Pr = 0.001 is a good 

approximation for the limit of Pr → 0, at least over the range 0 ≤ Ha ≤ 300. 

4. Normal-mode linear stability analysis

4A. Disturbances. Normal-mode linear stability analysis, which compares well with nonlinear simula

tions in the half-zone [Levenstam et al. 2001], was used to study the stability of the base flow in the full-

zone liquid bridge. The base flow was subjected to infinitesimal three-dimensional normal-mode 

disturbances of the form 

where ε is an infinitesimal magnitude and m denotes the azimuthal wave number of the disturbance. For 

uniqueness, disturbance waves must complete themselves as they travel through θ = 0 → 2π, therefore m 

is integer valued. Axisymmetric m = 0 cases were not investigated as they have been shown to be very 

stable in similar systems [Kasperski et al. 2000]. The extra factor of i in (4-2) accounts for the phase shift 

in the variables which are zero in the base state, yielding a purely real linear stability problem. 

Disturbances adhere to one of two axial symmetries. When perturbation variables have the same axial 

symmetry as their corresponding base flow variables, the mode is denoted as “symmetric”. When 

perturbation variables have the opposite axial symmetry as their corresponding base flow variables, the 
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mode is denoted as “antisymmetric”. Any combination of these disturbance types will result in a critical

ReFZ that larger than the smaller ReFZ,cr of these two.

Figure 6 shows an example of streamlines in the base flow along with the disturbed flow. In the ax

isymmetric base flow state, a weightless fluid particle released at the starting point circulates on the 

black closed path (the stream function contour) within a fixed θ plane. This specific example first 

transitions to stationary antisymmetric disturbances with m = 2. At the critical ReFZ, a particle released 

at the same starting point changes its “orbiting radius” as it circulates, while oscillating within a θ = π/m 

wedge. 

Figure 6. Streamlines in the base flow (black closed path) and disturbed flow (gray spiral path), and 

disturbed flow (vectors) at the midplane (Pr = 0.02, Ha = 0 at ReFZ,cr = 1546.58, stationary 

antisymmetric disturbances with m =2, base flow grid r ×z =35×45, temperature grid r×z =30×30, 

linear stability grid r×z =28×28, α =300, perturbation versus base flow maximum magnitude ratio 

5%).

Note that the path is cut off intentionally at the “end” point to better show its spiral structure. Flow in 

other wedges and in the lower half of the liquid bridge can be inferred from the symmetry and mode 

number of the disturbance.

Arrows in the z = 0 plane of Figure 6 show the disturbed flow motion at the liquid bridge midplane. Flow 

circulates from the liquid bridge interior back to the free surface due to the viscous effect. The flow at z = 

0 has no azimuthal component due to the antisymmetric disturbance mode. Perturbed flow crosses the 

midplane into the upper or lower half of the liquid bridge. In contrast, the half-zone assumes a no-slip, 

no-penetration midplane. 

4B. Critical thermocapillary Reynolds number. The critical ReFZ,cr measures the critical point at 

which the base flow transitions to the first instability. Beyond ReFZ,cr, one or more infinitesimal 

disturbances grow in time, breaking either the axisymmetry or the axial symmetry or both, and 
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potentially evolving the motion to a periodic flow. The goal is to find the first transition to instability 

among all possible disturbance modes.

By substituting the disturbance variables of (4-1) and (4-2) into the governing equations and boundary 

conditions and linearizing (neglecting ε 2 terms) and discretizing, a generalized eigenvalue problem is 

obtained:

The entire generalized system was solved using either the routine RGG in EISPACK or the routine 

DGGEV in LAPACK [Anderson et al. 1999], with refinement of the critical eigenvectors performed via 

the inverse iteration method [Saad 1992]. The real part of the leading eigenvalue (or pair) λR determines 

the stability of this system. If the imaginary part of the leading eigenvalue pair λI 6= 0, the base flow tran

sitions to a periodic disturbance. Otherwise λI = 0 and the transition is stationary. For each disturbanc 

mode (Pr, Ha, m, antisymmetric or symmetric mode), a neutrally stable mode is found if the leading 

eigenvalue (or pair) has λR = 0. A slight increase in ReFZ causes this mode to become unstable and grow 

in time.

Finding the ReFZ associated with a neutrally stable mode is an iterative process. Starting from a stable 

ReFZ,s (with λR < 0) and an unstable ReFZ,u (with λR > 0), a better approximation ReFZ,3 is predicted 

using the regula falsi method. The new λR corresponding to ReFZ,3 is computed using the shifted 

inverse iteration method. The ReFZ,3 then replaces either ReFZ,s or ReFZ,u. In this way the bounds on 

the neutrally stable ReFZ are narrowed through iterations until convergence. The linear stability 

analysis code is written in Fortran 90.

Variables in the linear stability analysis are the velocity perturbations vr1 and vz1, temperature per

turbation T1, and electric potential perturbation φ1. Reduction from the 9 primitive stability variables to 

these four is accomplished using incompressible continuity and θ momentum to solve for vθ1 and P1, 

respectively. The electric current density perturbations (jr1, jθ1, and jz1) are solved using Ohm’s law and 

then substituted into conservation of charge. The resulting set of partial differential equations can be 

found in [Houchens and Walker 2001] for the half-zone. Similarly to the base flow analysis, these 

variables are represented as Chebyshev polynomials. Only even or odd terms in both r and z are nonzero 

due to the symmetries. In addition, by modeling antisymmetric and symmetric disturbance modes 

separately, the full-zone liquid bridge domain can be halved at the midplane. The price is that two codes 

have to be developed. An NR × NZ Gauss–Lobatto collocation grid is adopted for r ∈ (0, 1) and z ∈ (0, b), 

which is equivalent to a grid resolution of r × z = (2 × NR) × (4 × NZ ) in the fulldomain liquid bridge 

simulation if no symmetries are observed. The finest stability analysis grid used was NR × NZ = 50 × 70 

for high-Ha cases. 

Disturbances with a wide range of azimuthal wave numbers m, for both the antisymmetric and sym
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metric modes, are investigated. Axisymmetric disturbances (m = 0) are not studied in this work because 

they are unlikely to be the critical disturbance mode. For example [Bouizi et al. 2007] reported that 

ReFZ,cr for the m = 0 mode ranges from seven times to thousands of times larger than ReFZ,cr for the 

critical m = 2 mode for Pr ∈ (0.001, 0.04).

For a fixed Pr, a neutrally stable ReFZ versus Ha branch can be obtained for each disturbance mode. 

The critical ReFZ,cr is the lowest among all neutrally stable ReFZ’s. For example, the neutral stability 

branches for Pr = 0.02 (Figure 7a) show how the critical disturbance mode changes from m = 2 to 3 and 

then 4 for Ha ∈ (0, 50). The m = 2 symmetric branch (dashed line) deviates from the critical 

antisymmetric modes as Ha increases. Although other stability branches above the critical branch are not 

valid for predicting a second and third bifurcation, they provide insight into flow stability when subject 

to these perturbation modes.

Table 1 lists ReFZ values on the Pr = 0.02 neutral stability branches. For both antisymmetric and 

symmetric disturbance modes, m is tracked from 1 to 8 for Pr = 0.02, and to at least the critical m + 4 for 

Pr = 0.001. ReFZ values not shown in Table 1 are higher than these listed ReFZ’s for the same Ha. The m 

= 5 antisymmetric branch never becomes critical up to Ha = 300 for Pr = 0.02.

The ReFZ,cr versus Ha curves for Pr = 0.02 and Pr = 0.001 (see Figure 7b) summarize the first 

instabilities over a wide Ha range. The ReFZ,cr increases quickly with increasing Ha, which 

demonstrates the magnetic stabilization effect. Stronger magnetic fields damp the flow, so that more 

driving energy must be fed in before the flow trips to an instability. The critical curves determine the 

minimum magnetic 

Figure 7. Example of neutral stability branches for Pr = 0.02 and the first instability critical curves 

for Pr = 0.02 and for Pr = 0.001.
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Table 1. Neutrally stable ReFZ’s for Pr = 0.02 branches (ReFZ,cr’s are underlined).

field strength required to avoid instabilities in the optically heated float-zone crystal growth process. 

Note that Pr = 0.001 is chosen because its critical curve very likely marks the lower limit of critical 

curves for Pr → 0. According to [Houchens and Walker 2005], at Ha = 0 the ReFZ,cr for Pr = 10−10 is 

less than 1% smaller than ReFZ,cr for Pr = 0.001. Details of the perturbation flow field and the energy 

analysis between the base state and perturbed field are presented and validated with other liquid bridge 

studies in [Huang and Houchens 2011]. Here the focus is instead on the numerical issues that arise in the 

spectral collocation technique and linear stability analyses. The following sections are widely applicable 

to a range of partial differential equations. First, identification of spurious eigenvalues is discussed. 

Then, regularization and grid dependence issues are covered. Finally, the use of pseudospectra to 

investigate the robustness of stability analyses are addressed. 

4C. Identifying spurious eigenvalues. In the linear stability analysis, unstable systems are identified by 

positive leading eigenvalues. However, some spurious eigenvalues (usually with very large 

magnitudes) emerge in the generalized eigenvalue problem, (4-3), bearing no physical meaning 

regarding system stability. It is crucial to identify and separate them from the remaining legitimate 

eigenvalues to correctly predict the stability of the system.

Legitimate eigenvalues are independent of linear stability grid resolution. In Table 2, to test if the  
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leading eigenvalue pair 350.47 ± 7542.09i on a 30 × 40 grid is legitimate or spurious, the linear stability 

code was run on two other grid sizes, 28×28 and 40×50. The fact that 350.47±7542.09i is not present on 

these two grids indicates that it is a spurious eigenmode. All other leading eigenvalues agree well, 

independent of the grid.

As a direct proof, perturbation variable contours are plotted (Figure 8a) using eigenvectors corre

sponding to the spurious eigenvalue pair 350.47 ± 7542.09i. The checkerboard pattern has no physical 

justification, but is rather an oscillation of a high-order mode(s) in each direction between 

Gauss–Lobatto collocation points. This is clearly shown in the Chebyshev polynomial coefficient plot 

(Figure 8b) for vr1, where

Table 2. Identification of a spurious eigenvalue (underlined) through grid refinement of the linear 

stability analysis (Pr=0.001, Ha=0, ReFZ =1000, m =1, α =400, symmetric mode).

Figure 8. Perturbation contours and Chebyshev polynomial coefficients associated with the spurious 

eigenmode 350.47±7542.09i in Table 2 (Pr = 0.001, Ha = 0, ReFZ = 1000, m = 1, α = 400, linear 

stability grid r × z = 30 × 40).
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The coefficients of the highest-order Chebyshev terms have the largest magnitudes, which are responsi

ble for the high-frequency, oscillating contours. Note that for a legitimate eigenmode, the Chebyshev 

polynomial coefficients decay exponentially when the representation is sufficient. Therefore, for this 

case the legitimate leading eigenvalue is a complex pair with negative real part −34.61 ± 9.26i as shown 

in Table 2. The base flow is stable at ReFZ = 1000 for this branch (Pr = 0.001, Ha = 0, and m = 1 

symmetric disturbance mode). 

5. Numerical aspects

5A. Regularization of the vorticity singularity. A regularization function F(z) (from (3-7)) is introduced 

in the thermocapillary boundary condition to remove the singularity of the velocity gradient at the corner 

(r,z) = (1, b). While ∂vz0/∂r = 0 at (r,z) = (1, b) due to the boundary condition vz0 = 0 at z = b, the 

thermocapillary boundary condition, without regularization, gives a nonzero ∂vz0/∂r at (r,z) = (1, b) due 

to the nonzero temperature gradient ∂T0/∂z at the free surface. This singularity is removed by 

multiplying the thermocapillary boundary condition by a function that decays quickly to 0 as z → b but 

remains equal or close to 1 for the rest of z. 

An optimum value of the regularization parameter α is achieved when increasing α further has no 

measurable impact on the flow and the singularity is effectively removed. Figure 9 shows a test over a 

wide range of α. With a sufficiently large value the physics becomes independent of α, as indicated by the 

“desired range”. But too large an α may provide insufficient regularization. In Figure 9, the vr0 contours 

bear wiggles and circles, indicating α =50,000 is too large for this case. With even less smoothing (higher 

α), the vorticity singularity may cause the numerical solver to predict the wrong physics, suggested by 

the sudden drop of the critical ReFZ beyond α =100,000. On the other hand, if the value of α is too small, 

the regularization effectively reduces the heat input at the free surface which reduces the driving force 

and explains the increase of the critical ReFZ (“too much regularization”) for α in range 10–100 in 

Figure 9. 

Figure 9. Searching for the desired range of regularization parameter α (semilog plot, Pr = 0.02, Ha 

= 50, flow grid r ×z = 40×40, temperature grid r ×z = 30×30, stability grid r × z = 40 × 40).
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A fast-decaying regularization function is especially important for high-Pr liquid bridge simulation.

Due to strong heat convection, the temperature at the free surface varies slowly along r = 1 until very 

close to (r,z) = (1, b). This feature is best preserved by a regularization function that decays quickly near 

(r,z) = (1, b). The choice of regularization function is arbitrary as long as the singularity is removed with 

minimum modification of the physics. For example, in [Bouizi et al. 2007] a power function 

regularization function F(z) = (1 − z 2n )2 was adopted, where n is a regularization parameter.

5B. Grid resolution and independence. A solution which does not vary with significant further grid 

refinement indicates that the grid resolution is sufficient and the results are reliable. Table 3 shows such a 

test based on the critical ReFZ. Significant resolution increases are introduced for the base flow grids and 

the stability analysis grid, but the ReFZ,cr barely changes, demonstrating grid independence was 

achieved.

More subtle inferences can be made from this test. ReFZ,cr increased slightly on finer grids in Table 3. 

This is expected because a fixed regularization parameter (α = 400) affects more grid points on a finer 

axial grid than on a coarser axial grid. The thermocapillary effect is weakened at more collocation 

Table 3. Grid dependence study based on ReFZ,cr for Pr = 0.02, Ha = 100, α = 400.

points on finer grids, therefore a higher ReFZ,cr is expected. However if this regularization effect were 

eliminated, ReFZ,cr would be lower on finer grids, because coarser grids tend to smear out the largest 

gradients, which contribute energy to the instability mechanism. On coarser grids, ReFZ,cr increases to 

compensate for this smearing effect until the energy is sufficient to trip the instability. Thus, in practice, it 

is necessary to carry out both grid and regularization dependence studies simultaneously. The 

regularization parameter must be increased as the grid is refined.

5C. Model robustness investigated by pseudospectra. As discussed above, the flow stability in the 

liquid bridge is determined by its eigenvalues. For the generalized eigenvalue problem, (4-3), each 

eigenvalue (each black dot in Figure 10) is associated with one flow perturbation eigenmode. Purely real 

eigenvalues correspond to perturbations in which the base flow transitions to steady, three-dimensional 

(not axisymmetric) perturbed flow. Complex eigenvalue pairs correspond to perturbations in which the 

base flow transitions to three-dimensional time-dependent flow, with the imaginary components repre

senting the frequency. 

Compared to the simplified numerical full-zone model, real world experiments include many imper
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fections that are difficult to represent. For example, in experiments the heat flux will not be strictly 

parabolic or axisymmetric and the free surface will not be exactly cylindrical. It is therefore desirable to 

predict what impact these imperfections might have, to verify the robustness of the model as compared 

to the experiment it is intended to represent.

Furthermore, numerical errors in the model may also play a significant but unpredictable role. For 

example, round-off errors in the eigenvalue problem may accumulate during computation and affect the 

results. Simulation results are more meaningful provided they are valid even when the model is subject 

Figure 10. Eigenvalues (black dots) and their pseudospectra σ (contours) of the generalized 

eigenvalue problem (4-3) (Pr = 0.02, Ha = 50, ReFZ =21,879.5, flow grid r × z = 70 × 100, 

temperature grid r × z = 40 × 40, stability grid r × z = 35 × 50, α = 1000).

to these minor changes, whether these are purely numerical or result from the inability of the model to 

represent small imperfections in the experiment.

Pseudospectral analysis provides a quantitative measure to test model robustness. Small numerical 

errors  are purposefully introduced into either or both AM and BM matrices in the eigenvalue problem 

AM x = λ BM x (see (4-3)). Note that  is different from the ε used in the linear stability analysis. In fact,  

acts like a random perturbation on ε. The small errors introduced through  can represent physical 

perturbations on the boundary conditions, geometry, and flow field of the model. They can also be 

purelynumerical perturbations. In this problem such perturbations could be relatively minor 

(introducing slight curvature in the free surface) or more egregious (violations of conservation of 

charge). 

After introducing these  scale errors, the modified generalized eigenvalue problem is solved again to 

investigate any physically meaningful changes. For example, a possible scenario of significant interest 

would result if a previously more-stable branch became the critical mode in the modified system. This 

has tremendous relevance in this problem, as only one known experimental study in a low-Pr fluid in the 
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half-zone configuration has indicated possible observation of the steady, three-dimensional transition 

before onset of periodicity [Takagia et al. 2001]. In other experiments, the instability has appeared to 

jump directly to the higher branch associated with the periodic transition, suggesting that the distinction 

between the preferred modes may be very subtle. Results will show, fortunately or unfortunately, that 

such sensitivity is not found in the full-zone model.

Introduced in [Reddy and Trefethen 1990], pseudospectra present a systematic method for carrying out 

such analyses. For an introduction and a simulation method (EigTool) for problems of small or moderate 

size, the reader is referred to [Embree and Trefethen 2011]. An extensive discussion on pseudospectra, 

including fluid mechanics applications, can be found in [Trefethen and Embree 2005]. 

For the large generalized eigenvalue problem in this work the matrix AM is perturbed with the random 

matrix E in the way described in [van Dorsselaer 1997] using

This analysis must be repeated until representative pseudospectra are obtained. Resulting pseudospectra 

σ contours indicate the sensitivity of the original eigenvalues to the random noise introduced via .

The results of this analysis are given by the color contours in Figure 10. The color gradient indicates the 

magnitude of the  perturbation. The smallest  = 10−8 perturbations do not affect the leading eigenvalues 

at a measurable level, hence the blue contours are not visible around these eigenvalues in the complex 

plane. The first blue envelope that can be observed at this order occurs for eigenvalues with real parts 

near −1500. As the order of  increases, more eigenvalues are influenced. For example, a perturbation of 

size  = 10−5 may move enclosed eigenvalues anywhere within the medium-red regions in Figure 10.

The leading real eigenvalue and complex eigenvalue pair are the most likely to become critical. The 

linear stability analysis predicts that the real eigenvalue will dominate. This is confirmed by the pseu

dospectra in Figure 10. Namely, at the largest pseudospectral perturbation of  = 10−4.5 , the leading real

eigenvalue maintains its leading position and explores only a very small region near its origin. In fact, no 

dark red contours of any eigenvalue extend into the positive half of the real plane. Since the 

pseudospectra  contours of all the eigenvalues remain behind the leading eigenvalue, the branches 

associated with these modes will not become critical, even in the modified system. Therefore the critical 

eigenmode (stationary, antisymmetric disturbances with m = 4 in this example) predicted by the original 

generalized eigenvalue problem remains valid under such perturbations. Therefore, in careful 

experiments it would be expected that the stationary mode would be observed first.

To quantitatively or qualitatively relate  = 10−4.5 numerical perturbations to specific physical changes 

in the fluid model is appealing, but intractable without imposing further structure on the perturbation. 

Random changes in matrix elements are often nonphysical, resulting in violations of the conservation  of 
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mass, energy, and momentum, and breaking the orthogonality of boundary conditions. Thus even a 

small  may have significant impacts on the physical system. In fact, the entire domain in Figure 10 is 

contained in the contour σ (AM,BM) for  ≥ 10−4.35. Nevertheless, the pseudospectra suggests the 

results of the linear stability analysis are quite robust, particularly for the leading eigenvalues which are 

of most interest.

6. Conclusions

A thermocapillary-driven full-zone liquid bridge with magnetic stabilization is modeled numerically.

A wide range of three-dimensional flow disturbances are tracked using a normal-mode linear stability 

analysis. The first instability curve for Prandtl number Pr = 0.02 (for example, molten silicon) is obtained 

up to an intermediate Hartmann number of Ha ∈ (0, 300). Within this range, the steady axisymmetric 

base flow first transitions to stationary three-dimensional disturbances with axial symmetries opposite to 

their base flow components (the antisymmetric disturbance mode). Moreover, first instabilities for Pr = 

0.001, representing the Pr → 0 limit, are presented up to Ha = 500. For Pr = 0.001, the base flow also first 

transitions to stationary three-dimensional disturbances. Axial critical disturbance symmetries are 

antisymmetric below Ha = 40 and symmetric for Ha ∈ (40, 500). The critical azimuthal wave number m 

increases with Ha for both Pr = 0.02 and Pr = 0.001.

Magnetic stabilization effects are observed and quantitatively measured for a steady external magnetic 

field in the axial direction. The induced Lorentz force acts proportionally against radial flow motion, 

thus multiple cell-like circulation patterns form within the liquid bridge. The most significant flow is 

confined to an increasingly narrow region near the free surface as Ha increases. At the interior the flow is 

damped until it is almost stagnant, which provides steady crystal growth conditions at the interface. This 

damping effect is also confirmed by quantitative studies of the viscous Reynolds number and kinetic 

energy versus Ha. Because the flow disturbances are greatly suppressed by magnetic stabilization, a 

more intense thermocapillary driving force is needed to trip instabilities within the liquid bridge. For 

example, the critical thermocapillary Reynolds number ReFZ,cr at Ha = 300 is two orders of magnitude 

larger than when no magnetic field (Ha = 0) is applied. 

Small-Prandtl number liquid bridges, dominated by heat conduction, are studied over the range Pr ∈ 

(10−12 , 0.0667). For Pr ≤ 0.001, the temperature field is effectively decoupled from the flow field, mim

icking a pure conduction state such that the temperature distribution is almost unchanged over the range 

Ha = 0 → 300. Thermal convection becomes important as Pr increases. It helps unify the temperature 

distribution throughout the domain as suggested by the isotherms. At higher Pr, the temperature gradient 

on the free surface concentrates near the liquid-solid boundaries (r,z) = (1, ±b), which intensifies the  

thermocapillary effect in these regions. Interestingly, the flow “circulation cell” thicknesses and 

locations are almost unaffected by increases in Pr over the range studied, mainly because the 
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electromagnetic force, proportional to the radial flow velocity, also increases as convection intensifies.

Numerical techniques and analyses are also highlighted extensively in this work. For example, the 

vorticity singularity in the spectral scheme is removed by applying an exponential regularization func

tion. The desired range of the regularization parameter α is determined by balancing the removal of the 

singularity and the invariance of the physics. The generalized eigenvalue problem AM x = λ BM x in the 

linear stability analysis is investigated from a numerical perspective. Spurious eigenvalue modes with 

no physical meaning are identified by a combination of grid dependence studies and plotting of the 

eigenmodes. The pseudospectra indicate that results predicted by this full-zone model are valid even if 

the model is subject to minor changes, be they numerical or physical.
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CRITICAL THRESHOLD AND UNDERLYING 
DYNAMICAL PHENOMENA IN PEDESTRIAN-INDUCED 

LATERAL VIBRATIONS OF FOOTBRIDGES

STEFANO LENCI AND LAURA MARCHEGGIANI

1. Introduction

As a consequence of the technological development of new materials and of the architectural trend 

toward lightness and slenderness, modern footbridges have small natural frequencies, which can 

resonate with those of the pedestrian-induced load [Živanovic et al. 2005; Venuti and Bruno 2009], 

which are in the ´ range 1.4–2.4 Hz for vertical forcing and in the range 0.7–1.2 Hz for horizontal 

(lateral) forcing. In this situation unwanted large bridge motions may occur. 

Various footbridges have experienced excessive lateral vibrations due to pedestrian-induced loads; the 

most famous is the London Millennium Bridge, which underwent, on its opening day, large horizontal 

vibrations due to the synchronization of the pedestrians’ motion with the natural modes of the structure 

[Dallard et al. 2001a; 2001b]. Other bridges which have suffered similar problems are the Toda Park 

Bridge [Fujino et al. 1993; Nakamura and Kawasaki 2006] and the Maple Valley Bridge [Nakamura and 

Kawasaki 2006] in Japan, the Solferino Footbridge in Paris [Danbon and Grillaud 2005], and the 

Alexandra Bridge in Ottawa [Dallard et al. 2001a]. 

The pedestrian-induced lateral vibrations occurred in bridges of different structural types (suspension, 

cable-stayed, and steel girder bridges) as well as on footbridges made of different materials (steel,  

posite steel-concrete, and reinforced and prestressed concrete) [Živanovic et al. 2005]. It is therefore ´ 

confirmed that a large-enough crowd of pedestrians can induce strong lateral vibrations on footbridges 

of any type, although this requires the lateral mode to have a low-enough natural frequency [Dallard et 

al. 2001a], approximately below 1.2 Hz, as stated. 

The phenomenon behind pedestrian-induced lateral vibrations on footbridges is that of synchronous 

lateral excitation [Dallard et al. 2001a; Strogatz et al. 2005; Živanovic et al. 2005; Eckhardt et al. 2007]. 

A B S T R A C T

The problem of lateral vibrations of footbridges due to the synchronization of the pedestrians’ motion with 

that of the supporting structure is analyzed by means of a 3D discrete time model. The map is linear in the 

mechanical part, and nonlinear in the synchronization part. A very simple and predictive formula is 

obtained for the critical number of pedestrians, which also takes into account the imperfect resonance 

between the pedestrians’ natural frequencies and the bridge frequency. It is shown that the underlying 

mechanism triggering the sudden appearance of swaying bridge motion is a perturbation of a pitchfork 

bifurcation. The results presented in this paper are not related to a specific real case and are based on a 

quite reasonable hypothesis, and therefore it is expected that they have general validity. 

Journal of Mechanics and Structure (Volume - 13, Issue - 1, January - April 2025)                                                             Page No. 27



People walking in a crowd exhibit a random level of synchrony, and in general produce a lateral force on 

the bridge. In fact, even if the bridge is still and the pedestrians are not synchronized at all, due to the 

stochasticity of the process the net force, which is the sum of all the lateral forces applied to the bridge by 

the footsteps of pedestrians, is not null, although it is possibly small. This small force produces small 

oscillations of the bridge.

As soon as the small bridge vibrations become perceptible to the unconscious human cognition pro

cesses, pedestrians tend spontaneously to walk in synchrony with the bridge, by slightly changing their 

walking frequency and phase. Of course, this tendency is somehow proportional to the vibration am

plitude, and so it is very small, and possibly negligible, for very small displacements. However, it is 

believed that this phenomenon starts for very low levels of amplitude of the motion, well below the 

amplitude threshold perceived by conscious feeling.

This instinctive behavior, which is the mechanism through which the pedestrians interact with the 

bridge, produces an increase of the synchronization level, and the associated net force grows. This estab

lishes an unwanted positive feedback loop, where the increase in oscillation amplitude causes 

pedestrians to increase their lateral footfall forcing and their level of synchrony, by following the  of the 

deck in order to balance themselves [Dallard et al. 2001a; 2001b]: the more the bridge moves, the more 

the crowd pushes it to move further. 

It has been observed that for potentially susceptible spans there is a critical number of pedestrians Ncr 

that will cause the vibrations to increase suddenly to unacceptable levels. The oscillations are small 

below Ncr and, due to the synchronization, they increase rapidly above Ncr. This critical threshold is of 

great practical interest, and its prediction is the goal of almost all studies. This paper aims to provide a 

simple and reliable analytical prediction of Ncr, as well as to further understanding of the overall 

phenomenon. 

The nature of the problem is nonlinear, as has been confirmed, for example, by tests performed on the 

London Millennium Bridge [Dallard et al. 2001a]; in spite of this, however, it can be detected within a 

mechanically linear framework, since even the “large” oscillations are orders of magnitude smaller than 

the span length. The nonlinearity is only in the interaction between the structure and pedestrians. 

Several papers have recently addressed this topic, even if a standard and generally accepted model of 

pedestrian-induced lateral dynamic loading and of dynamical interaction with the bridge is still missing. 

Živanovic et al. [2005] have performed a comprehensive review of the existing literature on the topic ́  

until 2003, while an updated review can be found in [Venuti and Bruno 2009]. 

Early studies on pedestrian-induced vibrations of footbridges [Blanchard et al. 1977; Matsumoto et al. 

1978; Wheeler 1980] concerned only the measurement and modeling of the vertical component of pedes

trian load on a motionless surface. 

Dallard et al. [2001a; 2001b] have conducted a series of controlled crowd tests on the Millennium 
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Bridge and have proposed a load model based on empirical observations. Also a formula has been ob

tained for the critical number of pedestrians; it actually depends only on the modal damping of the bridge 

through a proportionality constant which is strictly related to the specific real case-study (the 

Millennium Bridge). The findings of the present paper extend somewhat these works, by better 

highlighting the nature of this constant (for example, that it depends on the bridge natural frequency).

Nakamura [2004] has proposed an interactive forcing model analogous to the previous one, but which 

allows the schematization of the self-limiting nature of the synchronization phenomenon and the  tion of 

the steady-state amplitude. Also this model is based on coefficients which have been estimated from 

experimental tests [Fujino et al. 1993; Nakamura and Kawasaki 2006] and cannot easily be generalized 

to other footbridges. 

In [Newland 2003] the problem is approached by referring to the interaction phenomenon between fluid 

flow and structures which is widely studied in wind engineering and commonly known as lock-in. 

His model includes the empirical assumption that 40% of the pedestrians are synchronized with the 

bridge lateral frequency, independent of the amplitude of the oscillations. 

Fujino et al. [1993] have adopted a model of harmonic forcing by empirically tuning a synchronization 

parameter for the lateral vibrations of the Toda Park Bridge (according to their experimental data). This 

model does not predict any sudden transition to a vibrating state of the bridge but assumes a continuous 

increase in the vibration amplitude as the number of pedestrians increases. 

Roberts [2005] has schematized the interaction between the pedestrians and the footbridge assuming 

that synchronization occurs when the pedestrians’ motion is larger than the bridge motion; from this 

critical condition, he has obtained a limit number of pedestrians. 

In [Ricciardelli and Pizzimenti 2007] a systematic experimental campaign has been performed aimed at 

characterizing dynamically the lateral force exerted by pedestrians on footbridges, both in the case of a 

still deck and in the case of a laterally moving deck; deterministic and stochastic lateral loading models 

for the static case have been provided and the bases have been put in place for more sophisticated 

dynamic models including crowd-structure interaction. The mechanism of crowd synchronization has 

been investigated only from the qualitative point of view, deferring quantitative study and modeling 

until after further measurements. 

The excessive lateral vibrations of the Solferino Bridge in Paris have been explained in [Blekherman 

2007] on the basis of autoparametric resonance by using a double pendulum model; the process of 

possible synchronization of pedestrian loading with the relevant vibrational modes, which are 

nonlinearly coupled in a ratio of 2:1 between their frequencies, depends on the achievement of 

parametric resonance. 

Piccardo and Tubino [2008] have performed an interesting extensive critical analysis of the  

mechanisms identified in the literature and they have proposed a new forcing model based on experi
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mental tests carried out on harmonically moving platforms [Dallard et al. 2001a]. The force exerted by 

pedestrians is modeled as harmonic with an amplitude depending on the deck lateral displacement, and a 

simple criterion defining the limit pedestrian mass is introduced. They mainly ascribe to a mechanism of 

parametric excitation the lateral sway motion induced by crowds in very flexible, lowly damped 

footbridges, with a first lateral natural frequency around 0.5 Hz corresponding to half of the first lateral 

walking frequency.

In Venuti et al. [2007] a first-order model has been developed based on the mass conservation equation, 

in order to macroscopically describe the dynamics of the crowd in the framework of hydrodynamic mod

eling. The crowd, considered as a pedestrian flow, is assumed to behave like a continuous compressible 

fluid; the structural system is modeled by means of a generalized single degree of freedom (SDOF) 

model.

The two-way interaction between the crowd and the structure is studied. This model permits taking into 

account the triggering of the lock-in and its self-limited nature, previously explained only in [Strogatz et 

al. 2005]. The effects of the two different kinds of synchronization, that is, between the pedestrians and 

the structure and among the pedestrians, are introduced; the presence of different frequency components 

in the overall force exerted by the pedestrians is considered. Some parameters, used in the formulation of 

the model, come from reasonable qualitative considerations about pedestrian behavior and would 

require specific experimental tests to be confirmed. 

In [Bodgi et al. 2007] a similar approach has been adopted to simulate the mechanics of synchronous 

lateral excitation induced by pedestrians on footbridges.

Strogatz et al. [2005] have been the first, to the best of our knowledge, to mathematically describe and 

predict the simultaneous growth of bridge movement and crowd synchronization, an observation that 

was unexplained in previous models but that is confirmed by analyses of video footage [Arup 2000] 

recorded during overcrowding conditions on real footbridges [Fujino et al. 1993; Dallard et al. 2001a]. 

They proposed a model (called SAMEO in [Marcheggiani and Lenci 2010] from the initials of the 

authors) which is particularly interesting for its contribution to the physical-mathematical explanation 

of the underlying mechanical event, as well as for the reasonable description of the phenomenon itself. 

The SAMEO model is quite simple in its formulation and general enough to be possibly applied to any 

bridge at risk of synchronous lateral excitation. It models the bridge as a SDOF oscillator that interacts 

nonlinearly with each pedestrian. The pedestrians are modeled as limit-cycle phase oscillators (this 

choice comes from a similitude with biological systems, for example, fireflies). The key parameter of the 

model, C, measures the pedestrians sensitivity to bridge lateral vibrations; it can be determined only 

experimentally. 

The SAMEO model has been investigated in depth in [Marcheggiani and Lenci 2010], where extensive 

numerical simulations have been performed in order to detect the effects of the main parameters on the 
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system’s response, in particular on the critical threshold. Various extensions have been proposed to 

model some important aspects not considered in [Strogatz et al. 2005], such as, for example, the self-

interaction between pedestrians.

Although the original model and its extensions are simple in their formulation and meaning, they are 

quite involved in terms of the associated equations of motion, which is a set of N + 2 (N being the number 

of pedestrians) nonlinear ordinary differential equations. This system can be fully solved only 

numerically, although some approximated analytical techniques have been obtained in [Abrams 2006] 

to get some partial information. This is a limitation of the model, together with the fact that it does not 

provide immediate information.

In order to overcome the previous drawbacks, in [Lenci and Marcheggiani 2008] a simplified model is 

proposed and applied with some success to the case of the Millennium Bridge. The main idea is that of 

passing from ordinary differential equations to maps, that is, from a continuous time system to a discrete 

time one. In particular, a peak-to-peak map [Candaten and Rinaldi 2000], similar to that introduced by 

Lorenz in discovering chaotic attractors, has been considered and analyzed in depth. The discrete time 

permits simple computations (which can be performed by hand), and provides a simple but very 

predictive formula for Ncr and a better understanding of the dynamical phenomena lurking in the 

background. 

The work [Lenci and Marcheggiani 2008] is continued in this paper; another discrete time model is 

proposed, now based on the stroboscopic Poincaré map (instead of the peak-to-peak map). The mechani

cal part is described by the position x and velocity y, while the bridge-pedestrian interaction is described 

by a new state variable σ measuring the degree of synchronization of the pedestrians. We thus get a 3D 

map, linear in the mechanical part and nonlinear only in the interaction part, whose behavior is analyzed 

without exact knowledge of the evolution law for σ. Just its overall properties and local behavior are 

used, thus providing a very general analysis, which in particular extends that of [Lenci and 

Marcheggiani 2008]. The main results are obtained by a bifurcation analysis of the fixed points of the 

map, which of course is specific to the considered simplified model.

This paper is organized as follows. In Section 2 the mechanical model is illustrated leading to the me

chanical part of the discrete time model. Then, the pedestrian-bridge interaction is analyzed in Section 3, 

where the main properties of the third evolution law are discussed. The fixed points of the map, which 

are the dynamical behaviors of interest for the computation of the critical threshold, are considered in 

Section 4, where a simple formula for Ncr is obtained, and where the effect of imperfections is discussed. 

Some properties of the map in the resonant case are discussed in Section 5, and conclusions are 

presented in Section 6.

2. Mechanical model
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Based on experience in real cases, in particular on that of the London Millennium Bridge mentioned in 

Section 1, we assume that the phenomenon of lateral synchronization involves only one lateral mode 

ϕ(Z) of the structure, so that the mechanical equation of motion is 

M X¨(T ) + BX˙(T ) + K X(T ) = F(T ),           (1)

where M, B, and K are the modal mass, damping, and stiffness, respectively, and X(T ) is the modal 

amplitude. Note that M includes also the mass of the pedestrians, and in general is not a fixed number. 

However, in real cases the mass of pedestrians is about 10–15% of the total mass, and so it is expected 

that it does not play a key role. F(T ) is the modal force, that is, the projection on the considered mode 

ϕ(Z) of the force F(Z, T ) exerted by pedestrians along the span, F(T ) = R L 0 F(Z, T )ϕ(Z)d Z. In fact, the 

load of each pedestrian depends not only on the force he applies on the bridge, but also on his position Z 

∈ [0, L] along the span.

The definitions

2.1. A single pedestrian and the stroboscopic Poincaré map. We initially consider the effect of a single 

pedestrian by assuming

Equation (4) is an approximation of the real force, since experimental data concerning lateral walking 

forces on a still surface [Bodgi et al. 2007; Ricciardelli and Pizzimenti 2007] have shown that it is much 

closer to a square wave than to a harmonic force [Belli et al. 2001]. However, expression (4) can be 

considered as the first term in the Fourier series of the real excitation, thus capturing the most  energy 

content and maintaining the simple expression needed for analytical computations.
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2.2. Crowd of pedestrians. When a crowd of N uniformly distributed pedestrians is walking on the 

bridge the net force is

In principle, the parameters gi and ωp,i are stochastic variables which depend on the age, health 

condition, height, etc., of the population of pedestrians. However, φi , which is also a stochastic  depends 

only on the instant of time the pedestrian enters the bridge, and not on his human characteristics.
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Single pedestrian action is modeled by (4) and the action of the crowd by (11); we neglect the in

teractions between pedestrians, and focus only on the interaction of each pedestrian with the bridge, 

which is the main mechanism responsible for the considered phenomenon. For the pedestrian-

pedestrian interactions, an interesting topic involving complex living systems, but which is out of the 

scope of this paper, we refer to, for example, [Johansson et al. 2008].

In the following we make the assumption that each pedestrian of the crowd has the same natural 

frequency, ωp,i = ωp. This is motivated by the fact that only pedestrians with a natural frequency close to 

that of the bridge can undergo the synchronization phenomenon we are dealing with, since it involves 

resonance. This fact is confirmed by the movie of the opening of the Millennium Bridge [Arup 2000], 

where it is clearly seen that only some pedestrians synchronize (it was estimated at about 40% [Newland 

2003]). The others are not influenced by the bridge motion and maintain their natural walking, and so, by 

stochastic arguments, we can assume that they provide a zero net force on the bridge and thus are not of 

interest. We conclude that only a narrow band of native frequencies is of real interest, and we consider 

just one, ωp, in order to fulfill the objective of having a simple, but predictive, model. 

By the previous basic hypothesis, which guarantees that the stroboscopic Poincaré map is still well 

defined, we have that (11) becomes  

In the previous expressions N is the number of (synchronized) pedestrians whose frequency is close to 

ωp, that is, a subset of the total number of pedestrians walking on the bridge (see previous comments); 

only in calibrated experiments with controlled people is N the total number of pedestrians. The average 



force of each pedestrian is gav, such that Gav = gavK ∼= 30N (see Section 2.1), and φ is the average 

phase; its value is inessential, and it will be used in due course to simplify the computations.

From the previous expressions we see that f (t) ranges from f (t) = 0 (the perfectly asynchronous case) to f 

(t) = N gav sin(ωpt − φ) (the perfectly synchronous case). In real cases the actual force is in between 

these two bounds, and depends on the degree of synchronization. Thus we assume

where σ is a dimensionless measure of the degree of synchronization, which ranges from 0 (the perfectly 

asynchronous case) to 1 (the perfectly synchronous case).

Equation (16) is formally identical to (4), so that mathematically we bring back the crowd case to that of 

an equivalent (single) pedestrian, and we can take advantage of the formulas of Section 2.1. In doing 

this, we use the “free” overall phase to simplify the expressions. In particular, by assuming (without loss 

of generality)

3. Pedestrian-bridge interaction

In the previous section only the mechanical part has been considered. In order to model the dynamical 

bridge-pedestrian interaction and to describe the natural tendency of the systems to synchronize, we 

must consider also the human part, starting from the basic observation that the two parts influence each 

other.

The first step in this direction is to assume that not only xn and yn vary in (discrete) time, but also the 

synchronization parameter σ, which is now considered as a state variable, σn, and no longer as a (fixed) 
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parameter. Thus, (20) becomes

Note that the passage from (20) to (22) is not a simple substitution of σ with σn, but a conceptual change 

which, for example, increases the dimension of the dynamical system.

The next step consists in proposing a (discrete time) evolution law for the new state variable σn: 

so that (22) and (23) become a well-defined dynamical system. The choice of the function fσ (xn, yn, σn) 

entails modeling the bridge-pedestrian interaction, and so it is the key point. In fact, while for the 

mechanical part (22) there are physical (Newtonian) laws, for the human part (23) there are no 

corresponding axiomatic laws, and any choice is by definition subjective.

Common sense suggests that the degree of synchronization strongly depends on the amplitude,

of the bridge motion, and weakly on the current synchronization σn. Thus, in this work we assume

The following properties help in the characterization of the nonlinear function fσ (An):



Any function satisfying the previous four points is acceptable in principle.

For the forthcoming developments the most important characteristic of the function fσ (An) is its 

behavior around the origin An = 0. Without loss of generality we can assume the following local 

behavior: 

where ε is the imperfections parameter (see point (1)), k is a positive real number determining the local 

rate of convergence toward An = 0, and γk is a parameter measuring the “slope” of the local behavior, 

that is, the sensitivity of the pedestrians to the movement of the bridge. Both k and γk are parameters of 

the model to be determined theoretically or experimentally. 

4. Fixed points

Now that we have the map ((22) and (25)) describing the evolution law for the coupled bridge-pedestrian 

system we can study its dynamic behavior. We start by considering the fixed points 

which correspond to periodic oscillations of the original continuous time system.

Solving the first two equations of (27) yields

Figure 1. A schematic representation of the graphical solution of (29).
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The solutions of (29) are now discussed by considering separately the perfect (ε = 0, Figure 1) and 

imperfect (ε 6= 0) cases, and by using N as a varying (driving) parameter for parametric analysis and for 

bifurcation diagrams.

4.1. Perfect case. In the perfect case fσ (0) = 0, so that we have the trivial (or rest) solution A0 = 

0corresponding to the still bridge (see (29) and Figure 1). This is the main path of solutions.

To determine if there are secondary solutions bifurcating from the trivial one, we consider the local 

behavior (26) of fσ (A0), so that (29) becomes

This expression is the most important result from a practical point of view, since it gives the critical 

number of pedestrians triggering the phenomenon of lateral synchronization, that is, the maximum num

ber of (synchronizable) pedestrians allowed on the bridge deck. In fact, below this threshold there is only 

the rest solution, so nothing happens. It is just at this Ncr that a different solution becomes possible, and 

the swaying of the bridge appears. This is enough from a designer point of view, and it is valuable 

because (32) is a very simple formula obtained with reasonable hypotheses. In particular, it does not 

require knowledge of the whole function fσ (A0), but only of its local behavior. 

The model parameter γ , which has dimensions of inverse length, measures the sensitivity of the 

pedestrians to the bridge motion. Its meaning can be understood by considering the following piecewise 

linear expression, which is the simplest choice for fσ (A0): 

This expression shows that 1/γ can be approximately considered as the amplitude such that all the 

synchronizable pedestrians are actually synchronized. In fact, the limit for An → ∞ in point (4) is just a 
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mathematical issue, since in practice the phenomenon occurs for small (or moderately small) 

displacements, justifying the mechanically linear framework used in (1).

Expression (32) provides the critical number as a function of the pedestrians’ native frequency ωp. The 

worst situation corresponds to the resonant case, because in this case each pedestrian has the maximum 

effect on the bridge. In fact, by minimizing (32) with respect to ωp we get 

confirming, as expected, that the resonance is the worst situation. By inserting (34) into (32) we obtain
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In the case of the Maple Valley cable-stay bridge, also known as the M-Bridge, in Japan, we have that the 

third asymmetric and, to a minor extent, the fourth symmetric modes are involved in the lateral 

synchronization [Nakamura and Kawasaki 2006; Nakamura and Kawasaki 2009]. For the third mode 

we have synchronization, for example, when there are about 41 pedestrians on the deck (see [Nakamura 

and Kawasaki 2009, case M-6, Figure 11]). In this case we have [Nakamura and Kawasaki 2009] M = 

97200 kg, K = 29648570 kgsec−2 → � = 5.52 sec−1(that is, the natural frequency is 0.88 Hz), and B = 

2905 kgsec−1 . Therefore the critical number of synchronizable pedestrians is Ncr,min = 35. 

From the previous work we have seen that the main solution curve has a bifurcation point at Ncr. The 

type of bifurcation depends on the higher-order terms of the Taylor expansion (26): 

From (38) we see that if γ2 6= 0 we have a transcritical bifurcation. Otherwise, we have a supercritical 

pitchfork bifurcation if γ3 < 0 or a subcritical pitchfork bifurcation if γ3 > 0 (in this case fσ (A0) has an 

inflection point, which implies that the pitchfork is preceded by a saddle-node bifurcation for a lower 

value of N, see Figure 2); this is a consequence of the fact that the trivial solution is stable for N < Ncr. 

This is obvious by common sense, and can be proved mathematically by noticing that the Jacobian 

matrix of the map at the rest position is 

In fact, (40) has one solution satisfying s = 1 for N = ωp/γ = Ncr, while below this threshold we have |s| < 

1.

The whole bifurcation scenario for different values of γ2 and γ3 is qualitatively depicted in Figure 3. 

It is worth remarking that, again, the most interesting properties are determined only by the local 

behavior of fσ (A0).

Up to now we have considered only the case k = 1, which is the most interesting from a practical point of 

view because it is the unique case in which the model has a bifurcation point, which describes well, both 

qualitatively and quantitatively, the real behavior. For the sake of completeness we consider now also 
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the cases k < 1 and k > 1. Functions with these characteristics are schematically shown in Figure 2.

By referring to Figure 2 the solution scenarios can be easily understood. For k < 1, and supposing that fσ 

(A0) has regular behavior with an always negative curvature (as the function in Figure 2, see point (3)), 

we see that, in addition to A0 = 0, for every value of N there is always one and only one solution A0. 

Furthermore, the function A0 = A0(N) is monotonically increasing and goes to infinity for N → ∞. 

Figure 2. A schematic representation of fσ (A0) for different values of exponent k of (26).

The case k > 1 is slightly more involved. In fact we have that for small values of N (that is, very steep 

straight lines), there are no solutions. When N increases, at a certain threshold the line becomes tangent 

to the curve fσ (A0) (as line (a) in Figure 2), at a point ahead of the unique inflection point. Above this 

threshold there are always two solutions (see line (b) in Figure 2), one of which approaches zero and the 

other infinity as N → ∞. This is a saddle-node bifurcation, where a solution suddenly appears, far from 

the main path. This does not seem to capture the behavior observed in real cases, although we cannot 

exclude in principle that it could happen in different (unobserved up to now) situations. We only note that 

to detect the saddle-node threshold a local analysis around A0 = 0 is no longer sufficient. 

4.2. Imperfect case. In the imperfect case fσ (0) = ε > 0, so that A0 = 0 is no longer a trivial solution.

Considering the most interesting case k = 1 we have that

The main branch emanating from (A0, N) = (0, 0) is no longer at rest, although not so far from it, since ε 

is small — otherwise it cannot be considered as an imperfection and must be carefully considered in an 

appropriate way. There are no longer branching points and branching paths ensuing from the main one, a 
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fact that constitutes the main distinction with respect to the perfect case (Section 4.1).

All possible situations are qualitatively depicted in Figure 3, together with the corresponding perfect 

scenario. Each case of Figure 3 is clearly an unfolding of a local branching bifurcation, according to the 

fact that transcritical and pitchfork bifurcations are not structurally stable [Wiggins 1997].

Comparing the pictures of Figure 3 with the numerical simulations of the SAMEO model [Marcheg

giani and Lenci 2010] and with the experimental outcomes (the results of the Arup tests can be looked 

up, for example, in [Newland 2001; Abrams 2006]) we see that the situation actually occurring is that of 

Figure 3c; in fact, for low values of N there are small (but not null) oscillations, which suddenly but not 

instantaneously (as it would be in the perfect case of a pitchfork bifurcation) increase around a critical 

threshold. 

Figure 3. Qualitative bifurcation paths for perfect and imperfect cases; stable (solid lines) and 

unstable (dashed lines).

From the previous considerations we can draw the following conclusions:

• The theoretical critical value Ncr computed in the previous section is a reference value, of course of 

great engineering interest, and not the mathematically exact value of the critical threshold, which 

actually does not exist.

• The dynamical phenomenon underlying the problem of pedestrian-induced lateral vibrations of 

footbridges is a perturbation of a pitchfork bifurcation. This result was also obtained in [Lenci and 

Marcheggiani 2008] and is herein confirmed with a different model. 
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5. The resonant case

We have seen in the previous sections that the resonant case is the worst situation, and thus in this section 

it is studied in detail.
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Figure 4. Sketch of the graphical construction of the 2D map (44). In gray is attracting region R = 

(yn, σn) ∈ ([0, N], [0, 1]).

Figure 5. Some properties of the map (44).
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Figure 6. The six subregions of the attracting region of the map (44).
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scope of the present paper and is left for future work. We only note that in some isolated numerical 

simulations based on the example of Figure 7 we have seen that the bifurcated equilibrium point P0 is 

globally attractive for the whole phase space.

6. Conclusions

A 3D discrete-time dynamical system has been proposed for studying the pedestrian-induced lateral 

vibrations of footbridges. For the mechanical part, the model is based on the stroboscopic Poincaré map 

of the flow of the associated continuous time, one mode system, while the coupling between the 

pedestrians and the bridge motion has been modeled by assuming that the degree of synchronization of 

the pedestrians is a function fσ of the amplitude of the bridge oscillations.

The fixed points of the map have been studied in detail, without exact knowledge of fσ . Only the local 

behavior of fσ around the rest position and some qualitative properties have been used. Both the perfect 

and the imperfect cases have been considered.

In the perfect case it has been shown that in the unique case of interest in practice (corresponding 

tof0σ(0) = γ ∈ ]0,∞[) there is a main path of rest solutions. When the number of pedestrians N 

increases,at a certain threshold Ncr a secondary path bifurcates from the previous one, thus allowing for 

“large” oscillations of the bridge. This is the threshold of activation of the unwanted lateral oscillations, 

and it is of primary importance in practice. With the proposed model a very simple, predictive, and 

general formula is obtained for Ncr, a fact that constitutes the main result of this paper.

The imperfect case has been considered, by including the effect of small imperfections. It has been 

shown how the four possible fixed-points scenarios are modified by the imperfections. The one corre

sponding to a perturbation of a pitchfork bifurcation is noted to agree with experimental observations on 

real cases (the Arup experiments on the Millennium Bridge) and with numerical simulations of a more 
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sophisticated model. Thus, it is concluded that the dynamical phenomenon underlying the 

synchronization problem is a perturbation of the pitchfork bifurcation.

The present paper is devoted to the construction of the model and to the study of the fixed points, which is 

sufficient to obtain the desired formula for the critical number of pedestrians and to understand the main 

dynamical aspects. The detailed study of the whole dynamics of the system, including more complex 

phenomena such as chaos, is worthwhile but out of the scope of this work, and is left for future work.
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FREE VIBRATION OF A SIMULATION CANDU NUCLEAR 
FUEL BUNDLE STRUCTURE INSIDE A TUBE

XUAN ZHANG AND SHUDONG YU

1. Introduction

Horizontally placed CANDU1 fuel bundles in a circular tube are used in the Canadian nuclear industry. 

During operation, the fuel bundles experience small-amplitude flow-induced vibration, which can 

result in significant wear to the supporting structures over a period of time.

Static deformations of fuel bundle structures have been investigated in [Cho et al. 2000; Horhoianu and 

Ionescu 2006]. Dynamic models of a horizontally placed rod bundle sitting on the inner surface of a tube 

have not been seen before in the literature. 

A 43-element simulation fuel bundle is shown in Figure 1 on the next page. The bundle has 43 rods 

distributed in 3 rings and at the center. The rods are interconnected by two endplates. Each endplate 

consists of 3 circular rings and 16 ribs/webs. The weight of the bundle is supported by the bearing pads 

on the bottom rods in the outer ring, as shown on the right. Ideally there are four bearing pads in contact 

with the tube surface and supporting the bundle weight. The radial gaps between the tube surface and the 

bearing pads on the rods next to the bottom rods are about 30–50µm, which permits  bundle vibration 

without impacting the supporting structure. This smallamplitude vibration results in a relatively large 

motion in the top parts of the bundle due to the large bundle diameter. When disturbed or excited, the 

bundle vibrates about its equilibrium position. 

Fuel channel inspections at the Darlington nuclear station indicated that bundle vibrations, for example, 

rocking, induced by the coolant flow were responsible for the fretting between the pressure tube spacer 

sleeve and the inlet bundle bearing pads [Judah 1992]. Modeling the bundle vibration requires  

formulation of the rigid-elastic motions of a 3D bundle structure. The superimposition method [Schwab 

and Meijaard 2002] and the floating frame formulation [Shabana 2005] have been used to deal with rigid 

and elastic motions of a 3D body.

A B S T R A C T

This paper presents a numerical rigid-elasto model for vibration of a simulation nuclear fuel  structure 

confined in a circular tube. The model is developed using the finite element method combined with the 

floating frame formulation. The nonlinear dynamic equations are derived using the Lagrange equations. 

Small-amplitude vibration about the static equilibrium position is obtained through linearization. 

Numerical results show that the fundamental mode is a rocking-like mode, in which rigid body translation 

and rotation are coupled with elastic deformations. Gravity is found to reduce the frequency of the 

fundamental mode without affecting the higher modes. Experiments are conducted for a single fuel bundle 

structure to validate the numerical results.
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Extending from [Zhang and Yu 2010a], this paper presents a numerical procedure for modeling the rod 

bundles using the floating frame formulation. A rigid-elastodynamic model is established and applied to 

the study of the fundamental mode of a single bundle. The influence of gravity is discussed based on the 

simulation results. The simulation results are compared to experimental results.

2. Finite element model in the floating frame formulation

The floating frame formulation used in multibody dynamics is employed to couple the rigid body 

motion and the elastic deformation of the bundle. Nonlinear equations of motion are obtained for the 

bundle vibration, and then simplified to a set of linear equations for the small-amplitude vibrations about 

the equilibrium.

As shown in Figure 1, left, a global inertia frame is chosen in such a way that the X-axis is horizontal and 

the Y -axis is vertical. The origin of the global frame is chosen to be the center of the upstream endplate. 

To describe the rigid body motion, a reference frame x-y-z is also defined in the figure. The frame is 

rigidly attached to the mass center of the bundle so that it moves and rotates with the bundle.

This frame is regarded as the body frame of the bundle.

The bundle is discretized using two types of finite elements. The rods are modeled using a three-node 

higher-order beam element in conjunction with Euler–Bernoulli theory [Meirovitch 2001]. The 

endplates are modeled using a special nine-node isoparametric plate element [Yu and Wen 2007] in 

conjunction with the third-order thick plate theory of [Reddy 1984]. The finite element model is shown 

in Figure 1, right. The endplate is regarded as massless because its mass is significantly smaller than the 

mass of the rods. Therefore the stiffness of the endplate can be condensed using static substructuring. A 

superelement can then be achieved for each endplate using the procedures described in [Zhang and Yu 

2010b]. 

Figure 1. Rod bundle: isoparametric view (left) and finite-element mesh (right).
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Two sets of degrees of freedom (DOFs) are considered in this model. The first set is the rigid body (body 

frame) displacement including translations uc and rotations φ measured in the global frame X-Y -Z. The 

second set is the deformation-induced displacement u f measured in the body frame. In the floating frame 

formulation [Shabana 2005], the displacement of an arbitrary material point on the bundle can be 

expressed as

The kinetic energy of the system can then be expressed as 

The potential energy of the system is simply the summation of the elastic potential energy Ve and the 

gravity potential energy Vg:
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If the dynamic terms in (7) are dropped, a static equilibrium solution of the system q˜0 can be obtained 

through iteration. A Fortran90 code is implemented to solve for the equilibrium solution. For a 

convergence criterion of 0.001 for the L2 norm of the displacement vector, it takes two steps to reach the 

converged equilibrium solution. Figure 2 shows the scaled global deformation of the bundle at three 

different locations for the equilibrium solution.
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3. Numerical solutions and discussion

A numerical solution to the governing equations of motion, (9), is sought. The geometry and material 

properties of the bundle are listed in Table 1. The numerical solution shows that the fundamental natural 

frequency is 6.1 Hz. After normalizing the eigenvector, it is found that the Z-direction rigid body rotation 

is the primary dominant component and the X-direction rigid body translation is the secondary. The 

Figure 2. Scaled deformation in equilibrium at different locations: bundle ends (left),bearing pads 

(middle), and midspan (right).



Table 1. Geometric dimensions and material properties.

Figure 3. Scaled deviation of the rocking mode at different locations: bundle ends (left),bearing pads 

(middle), and midspan (right).

elastic DOFs are negligibly small except those on the two supporting rods at the bottom. To visualize the 

solution, the mode shape of the small deviation is shown in Figure 3. The total displacement, which is the 

static deformation superposed with the scaled deviation eigenvector, is shown in Figure 4. The mode 

exhibits a rocking motion in terms of the total displacement.

It is necessary to validate the accuracy of the meshing scheme and the numerical methods used in this 

paper against independent finite element code. Most general finite element codes do not incorporate the 

floating frame formulation; therefore comparison can be made on a conventional finite element model of 

the bundle structure. The above rigid-elasto model is degraded to a conventional finite element model by 

removing the floating frame formulation. The modal solution from this model is compared to that of an 

independent finite element model developed in ANSYS®ED 8.0 using straight beam elements. The 

comparison of the natural frequencies is shown in Table 2.

From the above solutions, it can be seen that the rigid body motion and gravity have a significant 

influence on the rocking frequency. The structural solution, which does not include the rigid body DOFs 

and the gravity terms, shows a frequency of 7.7 Hz, while the rigid-elasto solution shows a frequency of 
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Figure 4. Scaled total displacement of the rocking mode at different locations: bundle ends (left), 

bearing pads (middle), and midspan (right).

Table 2. Validation on the current finite element model (without floating frame formulation) against 

ANSYS ED 8.0

Table 3. Influence of gravity. Frequencies are shown for with and without floating frame formulation 

and gravity.

6.1 Hz. The difference is 20.8%. It can be seen in Table 3 that the influence of gravity is only significant 

on the fundamental mode. This is because the fundamental mode is related to rigid body rotations and 

gravity does positive work when the bundle rocks from the equilibrium position to either side. The 
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Figure 5. Scaled deformation of the rocking mode at different locations without floating frame 

formulation and nonlinear terms: bundle ends (left), bearing pads (middle), and midspan (right).

second mode is a pure vertical motion and the gravity work cancels itself in the motion. Higher modes 

are characterized by the bending deformation of the rods, and thus receive little influence from gravity. 

The fundamental mode of the structural solution is also shown in Figure 5 for comparison.

Although the influence of gravity is important, it needs to be clarified that the impact is delivered 

“indirectly”. The major influence of gravity is enforced through the equilibrium solution hidden in the 
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4. Experiment

An experiment was carried out to determine the rocking frequency of the bundle. Lateral oscillation in 

the horizontal direction of the bundle may be related to the rocking motion of the bundle. Its frequency 

can be obtained by monitoring the oscillatory motion of a point on the outer ring of the bundle near the 

end. Instead of using accelerometers, a noncontact displacement sensor is used for vibration 

measurement. This type of sensor is more sensitive to low frequency, relatively large displacement 

vibrations. 

To measure the bundle vibration, a 43-rod bundle is placed inside a 4-inch PVC tube supported by strong 

steel columns, as shown in Figure 6. A noncontact differential variable reluctance transducer 

(MicroStrain NC-DVRT-1.5) is used to recode the lateral displacement of the bundle. The sensor detects 

the distance between a target object and the face of the transducer head. The reluctance of the coils within 

the sensor is changed when the face of the transducer is in close proximity to a ferrous or highly 

conductive material. The transducer outputs a voltage signal that is a nonlinear function of the distance. 

The typical repeatability of this transducer is ±2µm and the frequency range is 0 to 800 Hz. The trans

ducer is mounted at one side of the tube near the end of the bundle. The transducer head penetrates the 

tube wall and approaches the rod around the 4 o’clock position. The initial gap from the head of the 

transducer is around 200µm for the best gain factor in the output. The time-domain voltage signal is 

sampled with a sampling rate of 5 kHz and recorded using a data acquisition system. The voltage signal 

is then converted to gap distance and analyzed using code written in Matlab to obtain the spectral 

information. 

Figure 6. Experimental setup.
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Figure 7. The response of the bundle to an impulse.

The response of the bundle to an impulse is recorded and analyzed. The time-domain displacement of the 

monitored point and its power spectral density are shown in Figure 7. The response of the rocking mode 

is found to be clear and free of noise from higher modes, such as the 90–100 Hz mode group 

corresponding to the first bending mode of the rods. The rocking mode frequency is 6.0 Hz. The damping 

ratio calculated from the difference between the peaks in the time-domain signal is about 0.05. For such a 

low damping ratio, the effect of damping on natural frequencies is negligible.

The tube is built from PVC, a material softer than steel. When the steel bearing pads contact the tube 

inner surface, the soft material will deform. This deformation leads to a contact stiffness and may have an 

influence on the fundamental frequency. It is necessary to examine the contact stiffness and compare it to 

the overall equivalent stiffness that relates to the bundle deformation with the current boundary 

conditions. The Boussinesq point contact solution [Johnson 1985] is used to estimate the order of 

magnitude of the normal contact stiffness kC. Based on the solution, the normal elastic deformation w at 

the contact location when a point object indents on a semiinfinite elastic space in the normal direction 

can be expressed as 

where P is the normal contact force, r is the contact point radius, G is the shear modulus of the elastic 

space (G = 1 GPa for PVC), and ν is the Poisson’s ratio of the elastic space (ν = 0.41 for PVC). The order 
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of magnitude of the contact stiffness on one bearing pad can then be estimated as kC,1 ∼ P/w = πGr/(1 − 

ν) ≈ 107. The overall contact stiffness provided by the contact of the four bearing padsis kC = 4kC,1 ∼ 4 × 

107. Because the most potential energy in the rocking mode comes from the deformation of the two rods 

that contact the tube through bearing pads, it is reasonable to compare kC with the equivalent stiffness of 

these rods. The equivalent stiffness can be conveniently estimated by dividing the weight of the bundle 

and the vertical displacement of its mass center from a static analysis. 

The order of magnitude of the equivalent stiffness is obtained as kE ∼ 1 × 106 , which is far smaller than 

kC. This indicates that the contact stiffness can be considered infinite and the tube can be regarded as 

rigid with regards to the lower bundle vibration modes. 

5. Conclusions

The vibration of a 43-rod simulation CANDU fuel bundle horizontally placed in a supporting tube is 

studied through numerical models and experiments. The floating frame formulation and nonlinear 

constraint conditions are employed in a finite element model to predict the natural frequencies of the 

small-amplitude oscillations about the equilibrium position. The fundamental mode is found to be a low 

frequency rocking mode, which is a combination of rigid body motion and elastic deformation, but is 

dominated by the rigid body rotation about a bundle axis. Gravity is found to influence the rocking 

motion, and to reduce the frequency. The simulation results are in good agreement with experimental 

results.
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