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Computational analysis of multi-layered Navier–Stokes
system by Atangana–Baleanu derivative

Awatif Muflih Alqahtania and Akanksha Shukla b
aDepartment of Mathematics, Shaqra University, Riyadh, Saudi Arabia; 

bDepartment of Mathematics,
Amity School of Applied Science, Amity University Rajasthan, Jaipur, India

 1. Background

The Navier–Stokes (NS) condition, a well-known controlling state of viscus fluid stream  improvement, 

was discovered in 1822. This condition, which is a combination of the second law, strength conditions, 

and congruity conditions, is conceivably known as Newton’ssecond law of fluid growth. When 

illustrating the real research of different consistent andplanning qualities, NS circumstances are helpful. 

This circumstance sets apart a few realobjects near the airplane’s wings, such as the blood flow, wind 

current, and fluid flow inpipes. The Navier–Stokes condition establishes the link among strain, the 

operational outerpowers of the liquid, and the fluid flow reaction. Quantitative data on shock waves, 

disturbances, and solitons have been successfully obtained using the Navier–Stokes condition[1–6] and 

conventional liquid elements. Navier–Stokes conditions are regarded as important mathematical tools 

A B S T R A C T

In our present paper, we have employed the Atangana–Baleanu  derivative in the multi-layered 

Navier–Stokes condition to analysethe nature of the flow. Actually, the stream, the impacts and mod

ifications caused by the operator and the mathematical techniqueapproach are the main subjects of our 

attention. In this exploratorywork, the Laplace transform strategy and the Atangana–Baleanufractional 

operator were combined. Due to the Atangana–Baleanu operator’s convergence in many engineering 

and technologicalissues, it is employed. We have also carefully evaluated the presence and uniqueness 

of the outcome. To visualize the variationsin the flow, we have presented the graphs of the stream’s 

velocitycomponents in each direction during the study
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 for a more thorough understanding of variety of real challenges in a number of crucial characteristics, 

such as their thermodynamics, aviation sciences,geophysics, the petroleum industry, plasma physical 

research, etc. [7–12]. Halfway inspection, which was described in advance in letters between Leibniz 

and L’Hospital in 1695,is a general improvement of the study of whole number solicitation to whimsical 

solicitation. Fractional analysis is constantly positioned to work on current mathematical models due to 

its unique potential to identify peculiar action and memory effects [13–26], which are the key 

components of tangled peculiarities. By working together, professionals likeCaputo, Riemann, 

Liouville, Ross and Miller, Podlubny, and others were able to resolve themathematical basis for 

fragmented solicitation auxiliaries. Incomplete Postmodern mathconjecture was connected to real-

world applications and included theories about chaos,electrodynamics, signal processing, 

thermodynamics, financial perspectives, and severalother fields [27–34].

In elementary mathematics, we frequently represented a variety of genuine qualities in a little 

sophisticated way, such as the distinction from conventional examination. The continuous plan depends 

on the fragmented soliciting subordinates depicted by Caputo quicklythe typical alteration. We acquired 

the game plan of the fractional solicitation NS condition about the time that the projected estimation was 

finished. Therefore,under various fragmented solicitations of the NS circumstances, we might acquire 

variouscourses of action. With the use of numerous fractional solicitation subordinates, we canseparate 

the distinct NS conditions’ components thanks to continuing systems. To locatea solution that fits a 

certain problem strategy, we can pick the best possible fragmentedsolicitation. The current article makes 

the assumption that an in-compressible liquid progression of density ρ has a period fragmentary 

Navier–Stokes condition and kinematicaccuracy υ = βρ . It appears as: 

Journal of Applied Mathematics in Science and Technology (Volume - 13, Issue - 2, May- Aug 2025)                               Page No. 2

ISSN 2986 - 0776



In this section, some basic expert duties are covered. For a moment, suppose that Herrmann and Hilfer’s 

fractional partial differential conditions, like time-fractional NS conditions, are not completely 

predetermined by applications in a variety of scientific a  planning fields. Recently, El-Shahed and 

Salem conducted a sporadic presentation of NS circumstances in 2005. For summing out-of-date NS 

conditions, makers employed Laplacechange, constrained Hankel change, and finite Fourier Sine 

change. By combining HPMand LTA, Kumar et al. deductively addressed a nonlinear partial model of 

the NS condition. By using the homotopy evaluation technique, Ganji et al., in addition to Ragab et 

al.,has resolved non-straight time fragmented Navier–Stokes system. ADM was developed byOdibat, 

Momani, and Birajdar to provide numerical estimates of the time-fractional NScondition. While 

Chaurasia and Kumar had inclined to a comparative condition by combining limited Hankel change and 

Laplace change, Kumar et al. obtained a canny plan of thetime-partial NS condition utilizing a 

combination of ADM and Laplace change. To handle nonlinear and instantaneous ODEs and PDEs, M. 

Rawashdeh and S. Maitama introducedNDM in 2014. The partial order Whitham–Broer–Kaup 

conditions, fractional order heatand wave conditions, fractional actual models, fractional order PDEs 

with relative deferment, and the fractional order dissemination conditions are just a few of the real-

worldissues that were concentrated using NDM.

The sensible strategy of fractional soliciting NS circumstances is emphasized on the ongoing creation. 

Since a long time ago, examiners have been interested in the arrangement of typical NS conditions. 

Actually, the main area of agreement between researchersand mathematicians is the intelligent designs 

of the fragmented request NS condition. Thiswas the active endeavour to develop or promote the 

ongoing systems for the strategiesof NS soliciting that was not complete. A noteworthy portion of them 

have developedinnovative methods to deal with Navier–Stokes of fragmentary order. In this way, 

streamresearch efforts make a sensible addition to the Navier–Stokes partial order conditions’logical 

framework.

In more recent works, Chu et al. used the variation iteration transform approach along with Caputo 

derivative and Laplace transform to solve the problem. Singh and Kumarused the fractional reduced 

differential transform technique to get the approximate solution of the system, whereas Kavvas and 

Ercan used a completely different strategy to findthe solution of the Navier–Stokes system. They made 

use of the momentum equationsystem.

In this paper, we performed logical operations, particularly the Laplace transformation approach, but we 

also assessed them and presented an argument in favour of the application of the recommended 

calculations. In this work, we first apply existence and onenesstheorem to show the existence and 

oneness of result. Using the Laplace transform, wewill continue to solve the problem iteratively. In order 

to find an approximate solutionof Navier–Stokes system, this work employs a unique technique and 

strategy. Our focus isin fact primarily on the stream, the effects and adjustments brought about by the 
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operator, and a novel mathematical approach.

The current article is divided into six areas; area 1 deals with the introduction andbackground of the 

problem, and Section 2 has prerequisites related to the topic. Area 3comprises the existence of the 

solution, whereas segments 4 and 5 deal with the onenessof framework and the solution of system with 

Laplace transform, respectively. The paperis concluded in part 6. We have acknowledged the 

researchers and scientists whose studywas crucial in our findings. References are attached at the end.

2. Definition and preliminaries

2.1. Atangana–Baleanu fractional derivative

Let h ∈ H(0, 1) and 0 <ω< 1, the Atangana–Baleanu Fractional derivative in Caputosense is defined as 

[35]:

2.2. Atangana–Baleanu integral operator

The Atangana–Baleanu integral operator of function ‘f’ and of order α is explained as [35]:

2.3. Atangana–Baleanu integral operator (in caputo sense)

The Atangana–Baleanu integral operator (in Caputo sense) of function ‘f’ and of order α is explained as 

[35]:

2.4. Laplace change of Atangana–Baleanu derivative

The Laplace change of the Atangana–Baleanu derivative of order τ is explained below:
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for more details, refer [35–45].

3. Existence of solution

Multi-dimensional Navier–Stokes condition is given as below

ISSN 2986 - 0776
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4. Oneness of solution

We shall demonstrate the originality of the system’s solution in this section. Assume there are two 

solutions to the system’s initial equation (21), β and β1. Suppos

Given that we are aware that G is a Lipschitz operator if G(f) − G(g)| ≤ σf − g|, where f and g are 

components of the range set and σ is the lowest number which fulfil the constraints. We thus obtain β =β1 

by applying Lipschitz constraint and bearing inmind that outcome is constrained. Applying the 

Lipschitz condition and keeping in mindthat the result is limited in the same way, so we get ψ = ψ1 and  = 

1

5. Solution of model by Laplace transform with Atangana–Baleanu derivative

The given system of equations is
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6. Conclusion

This study used the Atangana–Baleanu derivative to explore the multi-dimensional Navier–Stokes 

issue. We were able to resolve the issue and get their graphical representations with the use of the 

Laplace transform. Furthermore, we have demonstrated thevalidity of the methodology used and found 

that this innovative approach converges andis applicable to a range of fractional calculus problems. For ι 

= 0.5, 0.7 and ι = 0.9, graphsdepict the changes in the x-direction (β component), the y-direction (ψ 

component), andthe z-direction ( component). Apart from this, we have also shown the changes in β,φ 

and  for various values of ι (in Figure 4). We may employ a number of techniques toexamine the rate of 

change of flow. Even some graphical information may be found to aidin understanding the results and 

predicting the direction of future studies
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Data assimilation in 2D hyperbolic/parabolic systems using a
stabilized explicit finite difference scheme run backward in

time

Alfred S. Carasso
Applied and Computational Mathematics Division, National 

Institute of Standards and Technology,Gaithersburg, MD, USA

1. Introduction

In dissipative evolution equations, data assimilation refers to the ill-posed problem of finding initial 

values at time t = 0, that can evolve into useful approximations to givenhypothetical or desired target 

data, at a suitable time Tmax > 0. There is significant geophysical research activity in this area, using 

computationally intensive iterative methods,including neural networks coupled with machine learning, 

[1–15]. However, non iterativedirect procedures, based on stabilized explicit finite difference schemes 

marched backwardin time, while lagging the nonlinearities at the previous time step, may be a useful 

alternative in several data assimilation problems. This is demonstrated in [16,17] for the caseof 2D 

A B S T R A C T

An artificial example of a coupled system of three nonlinear partial differential equations generalizing 

2D thermoelastic vibrations, is used to demonstrate the effectiveness, as well as the limitations, of a non 

iterative direct procedure in data assimilation.A stabilized explicit finite difference scheme, run 

backward intime, is used to find initial values, [u(., 0), v(., 0), w(., 0)], that canevolve into a useful 

approximation to a hypothetical target result[u�(., Tmax), v�(., Tmax), w�(Tmax)], at some realistic 

Tmax > 0. Highlynon smooth target data are considered, that may not correspond toactual solutions at 

time Tmax. Stabilization is achieved by applying acompensating smoothing operator at each time step. 

Such smoothing leads to a distortion away from the true solution, but that distortion is small enough to 

allow for useful results. Data assimilation isillustrated using 512 × 512 pixel images. Such images are 

associatedwith highly irregular non smooth intensity data that severely challenge ill-posed 

reconstruction procedures. Computational experiments show that efficient FFT-synthesized smoothing 

operators,based on (−)q with real q > 3, can be successfully applied, even innonlinear problems in non-

rectangular domains. However, an example of failure illustrates the limitations of the method in 

problemswhere Tmax, and/or the nonlinearity, are not sufficiently small.

ARTICLE HISTORY Received 24 May 2023 Accepted 7 November 2023 

KEYWORDS Time reversed hyperbolic/parabolic systems; non smooth data assimilation; stabilized 

explicit backward marching scheme; nonlinear problems; numerical experiments

MATHEMATICS SUBJECT CLASSIFICATIONS 35M31; 35R25; 65M12; 65M30

Journal of Applied Mathematics in Science and Technology (Volume - 13, Issue - 2, May- Aug 2025)                               Page No. 22

ISSN 2986 - 0776



nonlinear advection diffusion equations. The present paper further illustrates the capabilities of such 

explicit schemes, by considering more challenging test problems, involving hyperbolic/parabolic 

systems, and consisting ofthree coupled 2D nonlinear evolution equations in three unknown 

functions.Backward marching stabilized explicit schemes have been successfully used in severalill-

posed backward recovery problems, [18–25]. A compensating smoothing operator isapplied at every 

time step to prevent the computational instability that would otherwiseoccur, [26, p.59]. While such 

smoothing leads to a distortion away from the true solution,in many problems of interest, the 

accumulated error is small, and does not prevent usefulresults.In the backward recovery problems 

discussed in [18–25], initial values at t = 0 aresought from relatively smooth noisy data at time Tmax > 0, 

data that are known to approximate an actual solution to within a known small δ > 0, in an appropriate Lp 

norm. Inthe successful numerical experiments discussed in [18–25], the data at t = 0 are typically chosen 

to be grey-scale images, defined by highly non smooth intensity data that arenot easily synthesized 

mathematically. An example of such an image is shown in Figure 1below.

However, the data assimilation problem is fundamentally different from the above backward recovery 

problem. In the data assimilation case, the target data at time Tmax > 0 maynot be smooth, may not 

correspond to an actual solution, and may differ from an actualsolution by an unknown large δ > 0 in that 

same Lp norm. Moreover, it may not be possible to find useful initial values at t = 0. Unexpectedly, as 

shown in [16,17], and as will beshown below, stabilized explicit schemes may sometimes be useful in 

the data assimilationproblem, by using more aggressive smoothing at each time step.

In the present paper, the backward recovery problem in the coupled system discussedin [22] is of 

particular interest. In [22, Figures 2 and 3], the complex forward evolution ofthe three independent non 

negative initial images at t = 0, is made evident. In the solution at time Tmax = 7.5 × 10−3, each image 

displays the influence of the other two images
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 as well as negative values. Nevertheless, as shown in the last row in Figure 2, successful recovery of the 

initial data was found possible from the data at Tmax.

As will now be shown, the stabilized explicit scheme developed in [22] can be useful evenin more 

challenging data assimilation problems. With positive constants α, β, and with L alinear or nonlinear 

second order elliptic differential operator in two space variables (x, y),defined on bounded domain  in 

R2 with a smooth boundary ∂, the following systemwill be studied

value of Tmax > 0, the following data assimilation problem is discussed: find initial values [u(., 0), v(., 

0),w(., 0)], that can evolve according to Equation (1), into a useful approximation to the desired data at 

time Tmax. Here, non smooth hypothetical data are consideredthat may not correspond to an actual 

solution of Equation (1) at time Tmax.

In the simplest linear case with L = −,w = z, v = zt, the above system correspondsto the thermoelastic 

plate problem ztt = −2z − αu, ut = βu + αzt, with hingedboundary conditions, u = z = z = 0 on ∂. This case 

has been studied by severalauthors [27–30], and the solution operator is known to be a holomorphic 

semigroup.In the developments below, the principal results from [22] that will be needed willbe listed 

without proof, using notation identical to that used in [22] for the reader’sconvenience. In Section 2, the 

linear selfadjoint problem is discussed. In Section 3, Theorems 3.1 and 3.2 establish error estimates for 

the forward and backward explicit schemes.These estimates imply limitations on the class of problems 

wherein the explicit schememay be useful, as shown in Equation (17) in Section 3.1. Section 4 discusses 

the useof smoothing operators based on the Laplacian, and leads to Theorems 4.1 and 4.2.Section 5 

describes nonlinear data assimilation experiments. Finally, Section 6 offers someconcluding remarks.

While there are no new theoretical results in the present paper other than the error estimate in Equation 

(17), the unexpected success of stabilized explicit schemes in the more challenging data assimilation 

problems considered here and in [16,17], is of great interest.The numerical experiments discussed in 

Section 5 below, together with those in [16,17],invite valuable scientific debate and comparisons with 

what might be achieved on similar examples, using artificial intelligence methods based on neural 

networks coupled withmachine learning.
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2. Linear autonomous selfadjoint L in Equation (1)

 In Equation (1), let <, > and  2, respectively denote the scalar product and normon L2() and let L denote a 

linear, second order, time-independent, positive definite selfadjoint variable coefficient elliptic 

differential operator in , with homogeneous Dirichet boundary conditions on ∂. Let {φm}∞ m=1, be the 

complete set of orthonormal eigenfunctions for L on , and let {λm}∞ m=1, sat

0 < λ1 ≤ λ2 ≤···≤ λm ≤···↑∞,                      (2)

be the corresponding eigenvalues. The initial value problem Equation (1) becomes ill-posed when the 

time direction isreversed. Such time-reversed computations are contemplated by allowing for possible 

negative time steps t in the explicit difference scheme Equation (8) below. With λm as inEquation (2), the 

positive constants α, β and the operator L as in Equation (1), fix ω > 0and p>1. Given t, define ν, , Q, 

ζm,rm, as follows:

 ν = (3 + α + α2 + 2β),  = ν(I + L), Q = exp(−ω|t|p),

m = ν(1 + λm) > 3, rm = exp −ω|t|(ζm)p, m ≥ 1.                      (3)

In the present discussion, the family {λm, φm} in Equation (2), is assumed known or precomputed. 

However, as will be illustrated below, in many practical computations, a different smoothing operator, 

based on a substitute elliptic operator L† with known characteristicpairs, such as the negative Laplacian, 

can be used instead. Since p>1 has non integer values typically, both the operators p and Q in Equation 

(3), must be synthesized in termsof the characteristic pairs {λm, φm} of L. With ζm,rm as in Equation 

(3), define for every of the characteristic pairs {λm, φm} of L. With ζm,rm as in Equation (3), define for 

every h ∈ L2(),

ph = ∞m=1(ζm)p < h, φm > φm, Qh = ∞m=1rm < h, φm > φm.             (4)

Let G, S, and P, be the following 3 × 3 matrices
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Let W be the three component vector [u, v,w] T. We may rewrite Equation (1) as theequivalent first order 

system,

Wt = GW, 0 < t ≤ Tmax, W(·, 0) = [f , g, h]T.              (6)

An explicit time-marching finite difference scheme will be studied for Equation (6), in which only the 

time variable is discretized, while the space variables remain continuous.With a given positive integer N, 

let |t| = Tmax/N be the time step magnitude, and let Wndenote W(·, nt), n = 0, 1, ... N. If W(·, t) is the 

unique solution of Equation (6), then

Wn+1 = Wn + tGWn + τ n,                                       (7)

where the ‘truncation error’ τ n = 12 (t)2G2W(·, t˜), with n|t| < t˜ < (n + 1)|t|. WithG and S as in Equation 

(5), let R be the linear operator R = S + tSG. Using the smoothingoperator S, we consider approximating 

Wn with Un ≡ [un, vn,wn]T, where

Un+1 = SUn + tSGUn ≡ RUn, n = 0, 1, ...(N − 1), U0 = [f , g, h]T.               (8)

With t > 0 and the data U0 at time t = 0, the forward marching scheme in Equation (8)

aims to solve a well-posed problem. However, with t < 0, together with appropriate  data U0 at time 

Tmax, marching backward from Tmax in Equation (8) attempts to solve an illposed problem. It remains 

to be seen whether Un can be a useful approximation to Wn, by proper choices of ω, p, and |t|. Define the 

following norms for three component vectorssuch as W(·, t) and Un,
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3. Error estimates and stabilization penalties

Explicit time differencing in systems of partial differential involving heat conduction, generally requires 

stringent Courant stability restrictions on the time step t. The stabilizing smoothing operator S in the 

explicit scheme in Equation (8) leads to unconditional stability, but at the cost of introducing a small 

error at each time step. If the accumulated errorat the final time Tmax is sufficiently small, the stabilized 

explicit scheme would offer considerable advantages in the computation of multidimensional problems 

on fine meshes.Theorems 3.1 and 3.2 below are proved in [22].

Theorem 3.1: With t > 0, let Wn be the unique solution of Equation (6) at t = nt. Let Un be the 

corresponding solution of the forward explicit scheme in Equation (8), andlet p, ζJ, ω, be as in Lemma 

2.1. If Z(t) ≡ Un − Wn, denotes the error at t = nt, n =0, 1, 2, ... , N, we have

 Z(t) 2≤ etζJ  Z(0) 2 + ω(etζJ − 1)/ζJ|||PW|||2,∞+ (etζJ − 1)/ζJ

  ωt |||PGW|||2,∞ + (t/2)|||G2W|||2,∞.                                                 (11)

In the forward problem, as t ↓ 0, we are left with the error originating in the possibly erroneous initial 

data U0 = [f , g, h]T, together with the stabilization penalty represented bythe second term in Equation 

(11). These errors grow monotonically as t ↑ Tmax. Clearly, ifTmax is large, the accumulated distortion 

may become unacceptably large as t ↑ Tmax, andthe stabilized explicit scheme is not useful in that 

case.Marching backward from t = Tmax in the backward problem, solutions exist only fora restricted 

class of data satisfying certain smoothness constraints. Such data are seldomknown with sufficient 

accuracy. This is especially true of the hypothetical data W�(·, Tmax)in the present data assimilation 

problem. It will be assumed that the given dataW�(·, Tmax),differ from the necessary exact data W(·, 

Tmax), by an unknown amount δ in the

norm.

 W�(·, Tmax) − W(·, Tmax) 2≤ δ.                     (12)

This leads to the following result.

Theorem 3.2: With t < 0, let Wn be the unique solution of the forward well-posed problem in Equation 

(6) at s = Tmax − n|t|. Let Un be the solution of the backward explicit scheme in Equation (8), with initial 

data U(0) = W�(·, Tmax), as in Equation (12). Letp, ζJ, ω, be as in Lemma 2.1. If Z(s) ≡ Un − Wn, 
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 denotes the error at s = Tmax − n|t|, n =0, 1, 2, ... , N, we have, with δ as in Equation (12),

 Z(s) 2≤ δ en|t|ζJ + ω(en|t|ζJ − 1)/ζJ|||PW|||2,∞

+(en|t|ζJ − 1)/ζJ ω|t| |||PGW|||2,∞ + (|t|/2)|||G2W|||2,∞ .                           (13)

3.1. Application to data assimilation

In Theorems 3.1 and 3.2 above, define the constants K1 through K5 as follows, and consider

the values shown in Table 1 below.

K1 = eζJTmax , K2 = ω(eζ Tmax − 1)/ζJ, K3 = |t|K2, K4 = K3/(2ω),

K5 = K2|||PW|||2,∞ + K3|||PGW|||2,∞ + K4|||G2 W|||2,∞.            (14)

As outlined in the Introduction, data assimilation applied to the system in Equation (1), is the problem of 

finding initial values [u(., 0), v(., 0),w(., 0)], at t = 0, that can evolveinto useful approximations to W�(·, 

Tmax), the given hypothetical data at an appropriatetime Tmax > 0. If the true solution in Equation (1) 

does not have exceedingly valuesfor |||PW|||2,∞, |||PGW|||2,∞, or |||G2W|||2,∞, the parameter values 

chosen in Table 1,together with Theorem 3.2, indicate that marching backward to time t = 0 from the

data W� at Tmax, leads to an error Z(0), satisfying

 Z(0) 2≤ δK1 + K5,                                                    (15)

with the constant K5 defined in Equation (14) presumed small. Next, from Theorem 3.1, marching 

forward to time Tmax using the inexact computed initial values U(·, 0), leads toan error Z(Tmax), 

satisfying

 Z(Tmax) 2≤ K1(δK1 + K5) + K5.                           (16)

The error Z(Tmax) in Theorem 3.1 is the difference at time Tmax, between the unknown unique solution 

W(·, t) in Equation (6), and the computed numerical approximation to
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 it, U(·, t), provided by the stabilized forward explicit scheme. However,  W�(·, Tmax) −W(·,(Tmax) 2≤ 

δ, if W�(·, Tmax) is the given hypothetical data. Hence, using the triangleinequality, we find

 W*(·, Tmax) − U(·, Tmax) 2≤ δ(1 + K2 1 ) + K5(1 + K1).                     (17)

Therefore, data assimilation is successful only if the inexact computed initial values U(·, 0) at t = 0, lead 

to a sufficiently small right hand side in Equation (17). Clearly, the value ofζJTmax, together with the 

unknown value of δ, will play a vital role.

4. Using the Laplacian for smoothing when L has variable coefficients

As previously noted, the developments in Sections 2 and 3 presuppose knowledge of the characteristic 

pairs of the variable coefficient elliptic operator L, or the precomputation ofa sufficiently large number of 

such pairs. However, it is often possible to use a substitutesmoothing operator Q†, based on a different 

elliptic operator with known characteristicpairs.Let  denote the Laplacian operator in , with 

homogeneous Dirichlet boundary conditions on ∂. With ν, L, , as in Equation (3), let  = ν(I − ). For any 

real q>1 and > 0, define 

Q = exp{−|t| q},                             (18)

Closed form expressions for the eigenfunctions of the Laplacian are known for specific domains that are 

important in applications, including rectangles, circles, and spheres [31].On such domains, it may be 

advantageous to construct smoothing operators Q basedon the Laplacian, in lieu of the smoothing 

operator Q in Equation (3). Such a programis feasible for those differential operators L for which the 

following result is valid: Givenany ω > 0, and p > 1, there exist  > 0, and real q ≥ p, such that for all g ∈ 

L2() andsufficiently small |t|,

 exp{−|t| q}g 2≤ exp{−ω|t|p}g 2, ⇐⇒  Qg 2≤ Qg 2 .                   (19)

The linear operator H = (exp{−|t| q})(exp{ω|t|p})is well-defined on the range of (exp{−ω|t|p}), which is 

dense in L2(). The inequality in Equation (19) would follow it can be shown that H can be extended to a 

bounded operator on all of L2(), with H 2≤ 1.

Equation (19) appears to be validated in numerous computational experiments. Resultsof a somewhat 

similar nature are known in the theory of Gaussian estimates for heatkernels. See e.g. [32–35], and the 
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 references therein. Let S and P be the following 3 × 3 matrices

The Laplacian stabilized explicit scheme corresponding to Equation (8) is given by

Remark 4.1: Useful pairs (, q) in the Laplacian stabilized scheme in Equation (21) are generally found 

interactively after relatively few trials. In many data assimilationexperiments, typical values satisfy 2 < q 

< 4, 10−10 ≤  ≤ 10−6.

Theorem 4.1: Let p, ζJ, ω, be as in Lemma 2.1, and choose  > 0 and q ≥ p, such that Equation (19) is 

satisfied. With t > 0, let Wn be the unique solution of Equation (6)at t = nt, and let Un be the 

corresponding solution of the forward explicit scheme inEquation (21). If Z(t) ≡ Un − Wn, denotes the 

error at t = nt, n = 0, 1, 2, ... , N, then 

Z(t) 2 ≤ etζJ  Z(0) 2 + (etζJ − 1)/ζJ|||PW|||2,∞

+ (etζJ − 1)/ζJ  t |||PGW|||2,∞ + (t/2)|||G2W|||2,∞ . (22)

Theorem 4.2: Let p, ζJ, ω, be as in Lemma 2.1, and choose  > 0 and q ≥ p, such that Equation (19) is 

satisfied. With t < 0, let Wn be the unique solution of the forward wellposed problem in Equation (6) at s 

= Tmax − n|t|. Let Un be the solution of the backwardexplicit scheme in Equation (21), with initial data 

U(0) = W�(·, Tmax) as in Equation (12).If Z(s) ≡ Un − Wn, denotes the error at s = Tmax − n|t|, n = 0, 1, 2, 

... , N, we have,with δ as in Equation (12),

 Z(s) 2 ≤ δ en|t|ζJ +(en|t|ζJ − 1)/ζJ|||PW|||2,∞

+(en|t|ζJ − 1)/ζJ |t| |||PGW|||2,∞ + (|t|/2)|||G2W|||2,∞ .(23)

Remark 4.2: In rectangular regions, the Fast Fourier Transform is an efficient tool for synthesizing q for 

positive non-integer q, when  = ν(I − ). In [22, Section 6.1], anapproach to the use of FFT Laplacian 

smoothing in non rectangular regions is discussed,and that approach is the one used in the numerical 

experiments described below.
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5. Nonlinear computational experiments with FFT Laplacian smoothing

While the theoretical developments in Sections 2, 3, and 4, are restricted to linear, autonomous, 

selfadjoint elliptic operators L, the stabilized scheme in Equation (21) maybe applied to more general 

problems. Let  be the open elliptical region in the (x, y) plane,defined by

0 < x, y < 1, 2.75(x − 0.5) 2 + 1.75(y − 0.5) 2 ≤ 1.           (24)

Let L be the nonlinear differential operator defined as follows on functions z(x, y, t) on  × (0, Tmax):

Lz = −0.001s(z)∇.{q(x, y, t)∇z} − γ (zzx + zzy), (25)

where

s(z) = exp{0.0075 |z]}, γ = 0.01,

q(x, y, t) = exp(10t)1 + 2 sin πx sin πy ≥ 1.(26)

With α = β = 3, and (x, y, t) ∈  × (0, Tmax), we now consider the system described in Equation (1). Such a 

system differs from that considered in Section 2, in that the operator L in Equation (25) is nonlinear, time-

dependent, a theoretical developments in Sections 2, 3, and 4, do not apply to Equation (1) with L as in 

Equation (25). In particular, the hypothesis in Equation (19) is not applicable. Nevertheless, backward 

reconstruction of solutions to Equation (1) can still be attempted usingthe Laplacian stabilized explicit 

scheme in Equation (21). The above system is primarily of mathematical interest, and may not reflect any 

actual physical problem. It is designed totest the robustness of the stabilized explicit scheme in the 

presence of nonlinearities.
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As outlined in the Introduction, data assimilation experiments will be conducted using highly non 

smooth hypothetical data, associated with 512 × 512 pixel gray scale imagesprescribed at a time Tmax. 

These data may not correspond to any actual solution of the system in Equation (1) at time Tmax. 

Nevertheless, the stabilized scheme in Equation (21) willbe used to find corresponding initial data at t = 0 

that might evolve into useful approximations to the desired data at Tmax. This may not always be 

possible. The values for
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t, p, ω, ζJ, shown in Table 1, together with  = 6.0 × 10−12, q = 3.875, will be used in the experiments 

described below.The first experiment is summarized in Figures 2, 3, and Table 2. The columnin Figure 2 

represents the hypothetical or desired data at Tmax = 6.0 × 10−4, consistingof the Ronald Reagan 

postage stamp image, u(x, y, Tmax), the Elizabeth Taylor image,v(x, y, Tmax), and the Ginger Rogers 

image, w(x, y, Tmax). Each of these three imageshas pixel values ranging from 0 to 255. Marching 

backward from these data producesthe second from the left column in Figure 2, corresponding to t = 0. 

The artifacts inthe images in that second column reflect the negative values that necessarily result att = 0, 

given the desired data at Tmax. This is documented in Table 2. Next, marchingforward to time Tmax, 

using these second column data, produces the resulting evolveddata in the third from the left column in 

Figure 2. The image artifacts in that third column have been noticeably reduced, and Table 2 confirms 

that the range of values inthe evolved data at Tmax, is a useful approximation to the desired range of 

values inthe leftmost column of Figure 2. Indeed, the L1 relative errors range from 4% to 6% inTable 2.

Figure 3 displays the intensity data associated with the evolved data at Tmax, shown in the third column 

of Figure 2. In the rightmost column of Figure 3, the magnitudes ofthe negative pixel values are shown, 

and compared with the significantly larger positivepixel values in the middle column of Figure 3. The 

results in Table 2 and Figure 3, suggestapplication of the following constraint to the evolved data at 

Tmax in the third column ofFigure 2, namely, replace any pixel value exceeding 255 by the value 255, 

and replace anynegative pixel value by the value zero. This results in the rightmost column ‘Evolved +’ 

inFigure 2, which is almost indistinguishable from the leftmost column in Figure 2. However, less 

successful results are obtained in this experiment when larger values of Tmax are used.

In the  next experiment, summarized in Figures 4, 5, and Table 3, a smaller value of Tmax is used, Tmax 

= 4.5 × 10−4, but a stronger nonlinearity is considered in the systemin Equation (1), with γ = 0.05 in 

Equation (26). Moreover, different hypothetical data areused in the leftmost column of Figure 4, with the 

USAF Resolution chart replacing theRonald Reagan stamp image, and an Alphanumeric image 

replacing the Ginger Rogersimage. Data assimilation is highly unsuccessful in this case, with severe 

artifacts in theimages in the second and third columns from the left in Figure 4, reflecting the very 

largenegative and positive pixel values shown in Table 3. Now, the L1 relative errors range from89% to 

103% in Table 3. In Figure 5, the intensity data associated with the evolved data at Tmax, shows equally 
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large positive and negative pixel values. Applying the constraint 0 ≤ z(x, y) ≤ 255, is not meaningful in 

this case, and produces the barely recognizablerightmost column ‘Evolved +’ in Figure 4
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6. Concluding remarks

In [16,17], and the present paper, non iterative direct methods, based on stabilized explicit backward 

marching finite difference schemes, were applied to 2D data assimilation problems, involving highly 

non smooth target data that did not correspond to actual solutionsat time Tmax > 0. Successful and 

unsuccessful assimilation examples were presented. Ofsignificant interest is whether equally good or 

better results can be obtained, on these orsimilar examples, using iterative methods such as are discussed 

in [1–15]
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 1. Introduction

Fractional differential equations have recently received significant attention from  researchers due to 

A B S T R A C T

 The space–time perturbed fractional Gerdjikov–Ivanov equation is  the main topic of this work, 

together with quintic nonlinearity and self-steepening, as it involves several intricate physical 

phenomena includingnonlinearity,self-steepeningandfractionalcalculus,where the fractional 

d e r i v a t i v e  i s  d e s c r i b e d  b y  e m p l o y i n g  a  c o n f o r m a b l e 

derivative.Inaddition,thegoverningequationistransformedintoan integer-order ordinary differential 

equation by using an appropriate fractionalcomplextransformation.Undercertainrestrictions,adirect 

a l g e b r a i c  m e t h o d  i s  e m p l o y e d  t o  i n v e s t i g a t e  t h e  s t r u c t u r e s  o f  c h i r p 

solitonsolutionsenfoldinghyperbolicfunctionalterms.Thedynamic behaviour and bifurcation of 

equilibria of the system are thoroughly examined; chirp soliton solutions under specified constraints are 

investigated and the evolving profiles of the obtained solutions are visualized. Moreover, this research 

offers valuable perspectives on  thebehaviourofchirpsolitonsunderspecificconditions,whichhave 

practical applications in nonlinear physical systems and optical communication systems. The 

significant contribution of this work is the investigation and obtaining of novel chirp soliton solutions 

with hyperbolicfunctionaltermsunderparticularlimitationsusinganovel approach. It further extends the 

prior approaches by treating difficult fractional differential equations from a fresh angle, offering new

 tools, and closely examining soliton  solutions
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 their essential and influential role in various fields of science such  as physics, engineering, control 

t h e o r y ,  s i g n a l  p r o c e s s i n g ,  f r a c t i o n a l  d y n a m i c s ,  fl u i d 

mechanics,electromagneticandcontinuummechanics[1].Severalstructuresthatareused  currently are 

investigated in mathematical models bymeansoffractionaldifferential equa tions (FDEs) [2,3]. 

Therefore, obtaining an exact or approximate solution to FDEs is of interest. Many exact and numerical 

methods have been developed and implemented to reachthisend. Inthesequenceof 

thesemethods,werecall theresidualpower series method [4], the reproducing kernel Hilbert space 

method [5], the differential transform method [6], the homotopy perturbation method [7], the homotopy 

analysis method [8], the extended trial equation method [9], the (G/G)-expansion method [10], the direct 

method [11], theRiccati-BernoulliSub-ODEtechnique[12], the modified Kudryashov method [13,14], 

the modified simple equation method [15], the generalized exponential rational function method[16], 

the auxiliary equation method [17], the (G/G2)-expansion method [18], the generalized Kudryashov 

scheme [19], Nucci’s reduction method [20], Lie symmetry analysis [21], and many others, to mention 

but few. The theory of soliton is significant in contributing descriptions naturally for the nonlinear FDEs 

where it has important and miscellaneous usages in several aspects due to its interesting properties 

[22,23]. It has also attracted a lot of attention of scientists as it explores and investigates the exact solitary 

solutions for the nonlinear PDEs as it is functioning examination region in mathematical physics and 

diverse aspects of nonlinear sciences [24]. The soliton propagation dynamics have been investigated  

i n v e r s a l  f r a c t i o n a l  m o d e l s  a s   t h e n o n l i n e a r  S c h r ö d i n g e r ’ s e q u a t i o n 

[ 2 5 ] , t h e S a s a – S a t s u m a e q u a t i o n [ 2 6 ] , t h e B i s w a s – M i l o v i c e q u a t i o n  [ 2 7 ] ,  t h e 

Lakshmanan–Porsezian–Daniel model [28] and the Schrödinger–Hirota equation [29]. 

The perturbed Gerdjikov–Ivanov (pGI) equation is a notable and significant nonlinear evolution 

equation in the optical fibre field. It has been studied in the last decade, which has been derived from the 

Schrödinger equation in quintic nonlinearity sense. Its solitons have importance intele communication 

industry of transmission of data with long-distance transoceanic and transcontinental. There are 

effective approaches that have been developedandutilized to construct optical soliton solutions for the 

integer-order and fractional pGI equation. In [30], Gerdjikov and Ivanov studied the nonlinear evolution 

equations. Optical solitons of the pGIequationhavebeenobtainedusingbalancedmodifiedextended   

tanh-function and the non-balanced Riccati-Bernoulli Sub-ODE methods in [31]. New soliton solutions 

of thepGImodelhavebeendevelopedin[32].In[33],theauthorsutilized the sine-Gordon equation method 

to establish optical solitons of space–time conformable fractional pGI equation. The dynamics of 

solitons in the pGI equation have been explored in [34] carried out formally by considering particular 

transformations and exerting newly well-established methods to obtain optical solitons of the model. 

The modified-unified method was used to obtain approximate analytic solutionsof the 

GIequationin[35]. Using the simplest equation method, the authors in [36]obtainednovel solitons
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 Using the simplest equation method, the authors in [36]obtainednovel solitonsolu tions for the pGI 

equation. In this paper, we consider the space–time perturbed fractional Gerdjikov–Ivanov equation in 

the form:

where ϕ�(x,t) is the complex conjugate of ϕ(x,t), ϕ(x,t) represents the complex-valued  wave function of 

spatial and temporal independent variables x and t, respectively.The fractional term Dα tϕ denotes the 

temporal evolution, while the fractional term Dα x(|ϕ|2ϕ)  is the dispersion of group velocity. The quintic 

n o n l i n e a r i t y  t e r m  i s  | ϕ | 2 ϕ .  T h e   a 1  a n d a 2 

arethecoefficientsofthedispersionofthegroupvelocityandthequinticnonlinearity term, respectively. 

Moreover, the parameters a3,b1,b2,andc denotes the nonlinear dispersion, inter-modal dispersion, self-

steepening, and higher-order dispersion coefficients, respectively. The fractional derivative in (1) is 

described by means of conformable definition. Our investigation of Equation (1) is primarily driven by 

its potential to improve our knowledge of nonlinear wave dynamics and its practical significance in a 

variety of physical systems. Our decision is based on multiple important factors, namely, the modelling 

of optical pulses inside optical fibres is greatly aided by Equation (1), which has immediate 

consequences for maximizing signal transmission and reducing distortion in optical communication 

systems. Moreover, Equation (1), in the larger framework of nonlinear physics, is a part of a class of 

equations that provide insights into nonlinear dynamics by describing nonlinear wave behaviour in a 

variety of physical phenomena, from fluid dynamics to plasma physics. Our approach is novel since 

fractional calculus is incorporated into our equation. Our work advances the use of fractional calculus in 

explaining nonlinear wave dynamics in a variety of physical systems. Fractional calculus is becoming 

more and more popular due to its capacity to explain intricate memory-dependent processes. We also 

study chirp solitons, which have practical significance, particularly in optical communication 

applications where precise pulse shaping is needed. Preserving the shape and stability of optical pulses 

requires an understanding of chirp soliton generation and behaviour. The method used to construct these 

chirp solitons solutions is a direct algebraic method that depends on assuming the desired solutions have 

specific expressions involving hyperbolic functions.

 This article establishes chirp soliton solutions for the space–time pFGI Equation (1)  based on efficient 

ansatzes with aid of a fractional complex travelling-wave transformation that reduced the proposed 

Equation (1) into integer-order ordinary differential equation (ODE). To the best of knowledge, the chirp 

solitons for the governing model (1) are presented for the first time in the literature, which is considered 

as a new contribution and a strong motivation for this work. It also studies the equilibrium bifurcation of 

Equation (1) for the first time, which is considered as a major tool in investigating the existence of
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Equation  (1) for the first time, which is considered as a major tool in investigating the existence of the 

solutions sought to be derived. The paper organized as introduction as first section. Section 2 presents a 

brief review of the conformable derivative definition and its essential properties which are used in our 

analysis. In Section 3, we apply a fractional complex travelling-wave transformation to the proposed 

Equation (1) and translate it into integerorder ordinary differential equation. The dynamical planner 

system of the corresponding integer-order ordinary differential equation will be studied in the same 

section. In Section 4 we construct the chirp soliton solutions for the governing Equation (1). Finally, 

some discussion and conclusions about the obtained result will be found in Section 5 and 6.

2. Brief reviewinconformablefractional derivative

 Thefractional derivative is an interesting research area for many centuries. Several types of  fractional 

derivative definitions were presentedintheliterature such as Riemann–Liouville [37], Liouville-Caputo 

definition [38], Caputo–Fabriziodefinition[39],Atangana-Baleanu definition [40]andmanyothers[41]. 

Khalil et al., [42], introduced the simplest, most natural and efficient definition of the fractional 

derivative. Let w(t) :[0,+∞) → R be a  function. Then the conformable fractional derivative of order α of 

w is given as

 for all t > 0,α ∈ (0,1]. The function w is α-conformable differentiable at a point t when  the limit in (2) 

exists. The conformable derivative obeys many renowned required properties that appears in the 

classical derivative like the product and quotient rules [43].

 Theorem 2.1: [43] Let the functions w1 = w1(t) and w2 = w2(t) be α-conformable differ entiable at any 

point t > 0, α ∈ (0,1]. Then, we have
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 Moreover, the conformable differential operator conforms to the crucial property, chain  rule.

 Theorem 2.2: [43] Suppose w1(t) be α-conformable differentiable function and w2(t) be  differentiable 

well-defined in the range of w1(t). Then, we have

 3. Analysis ofgoverningequationandequilibriabifurcations  

 To tackle the chirp soliton structure for the space–time pFGI Equation (1), we present the  following 

fractional complex transformation

 where (ξ)represents the real-valued unknown amplitude function of the coordinate ξ,  

φ(ξ)givesthephasemodificationparameter,whileλandvarethefrequencyandthespeed  of soliton, 

respectively. The corresponding chirp is presented as

where the prime sign denotes the derivative with respect to the travelling coordinate ξ. The 

transformation (4) with the aid of the properties of the conformable derivative leads  to ensure the 

following relations for the fractional differential terms in (1),
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 Substitute the relations in (6) in the governing Equation (1). Then simplify the result,  respectively, to 

get complex expression of its imaginary and real parts,

In order to solve these coupled equations, we choose the ansatz in the form

where the parameters A and B are determined by inserting  the ansat (9) intotheimaginary  part (7). After 

some simplifications and setting the coefficients of the independent terms, and 2 

,tobezerowefindthevalueofA   and  B as

Using the values in (10) in (5), the resultant chirp can be written as.

 Consequently, the real part of (8) together with aid of (9) and (10) are addressed in the  form

 The integer-order ODE (12) can be rewritten as.
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 where the parameters R1,R2 and R3 are given by

provided that a1= 0. In light of studying the dynamical plane and the bifurcation of the  equilibria for the 

integer-order ODE (12), we assume d dξ = ˆ . Then the integer-order ODE(13) transformed into the 

following dynamical system.

 This dynamical planner system is equivalent to

 Now, integrate both sides to get the Hamiltonian function

Then, it easy to see that all critical points of the dynamical system (15) are in the form  √ E( i,0).Let = R2 

2 −4R1R3, ± 1 =± −R2− 2R3 critical points can be listed in the following cases: 
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Usingthetheoryofthedynamicalplannertheclassificationofthecriticalpointsfollows as:  if D(E)<0,then 

t h e  c r i t i c a l  p o i n t  i s  s a d d l e .  I f  D ( E ) > 0 ,  t h e n  t h e  c r i t i c a l  p o i n t  i s  c e n t r e . 

Wedepictedthephaseportraitoftheobtainedcriticalpointsforthedynamicalsystem(15) at selected 

parameters in Figure 1.
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 Furthermore, the contour plot of the Hamiltonian function (17) is shown in Figure 2 at  the same selected 

parameters in Figure 1, to ensure our obtained results.

 Thebluecolourpoints inFigures1 and 2 represent the obtained critical points at  the selected parameters, 

which are classified as: E1(0,0), D(E1) ∼ =−0.087 < 0; saddle, E2,3(±0.56, 0), D(E2,3) ∼ =0.16 > 0; 

centre, and E4,5(±2.2,0), D(E4,5) ∼ =−2.56 < 0; saddle critical point. While red points represent the 

gotten critical points at the mentioned parameters, their classification as: E1(0,0), D(E1) ∼ =0.17 > 0; 

centre, and E2,3(±0.5,0), D(E2,3) ∼ =−0.37 < 0; saddle, which is appeared clearly in the Figures. 

Mathematica 11 software is used in computing all arithmetic symbols and procedures.

 4. Chirpsoliton solutions for the space–timepFGIequation

 The proposed method begins by searching for solutions to Equation (13) in specific  expressions that 

include hyperbolic functions. These expressions contain several specific parameters that must be 

determined by directly substituting these expressions into Equation (13) and deriving an 

overdetermined algebraic system in terms of the parameters to be found. Having solutions to this 

overdetermined algebraic system requires that

 some conditions be present on the parameters. In this section, we will extract three dif ferent solutions 

using three different expressions and set the necessary conditions for the existence of each of these 

important solutions.Then we will study the physical aspect of these solutions and study the extent to 
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study the extent to which the fractional derivative affects its behaviour.  This proposed method is 

distinguished from other methods in that it is easy to apply and has hig he fficiency next ractingsolutions 

in the form of expression scontaining hyperbolic functions. It also provides real conditions on the 

parameters for the existence of solutions. It is worth noting that this method was not used to find 

solutions to the governing model in this work.

 4.1. Brightchirpsoliton

 We consider a solution for the integer-order ODE (13) in the form

 where μ,P1 and P2 are constants to be determined. We substitute the formula (20) into  the integer-order 

ODE (13), simplify the gotten result and group the coefficients of the independent terms in the 

numerator to get

Set the expressions in (21) to be zero, then solve the obtained non linearal gebraic  system  to obtain the 

following values
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For more illustrations,the effect of the fractional derivative on the evolution of the bright  chirp soliton 

solution ϕ1(x,t) is introduced in Figure 4 at various fractional derivative orders. Moreover, the profile of 

chirping, δω(x,t) in (24) at μ− and  1 ,hasbeendepicted as a function of the coordinate ξ in Figure 5 at 

different values of the frequency and the speed of the soliton. It is obvious from the presented figures. 

The fractional derivative directlyaffectsthevolumeof theobtainedbrightsolitons.Notethat 

theselectedvalues for the parameters in Figures 3–5 satisfy the constraints (23), which make the 

amplitude function (ξ)and the phase modification parameter φ(ξ)be real-valued functions.

 4.2. Singularchirpsoliton

 To get the singular chirp soliton solution for the governing equation, the solution of the  integer-order 

ODE (13) can be considered in the form
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 To illustrate the physical nature of the explored solution (33), we introduce the profile of  the singular 

chirp soliton by depicting the modulus of ϕ1 (x,t), where it considers in case  μ−andP+  3 in 3 D and 2 D 

plots at selected parameters with in teger and fractional deriva tive orders. See Figure6 .Figure7 (a) 

presents the behaviour of the singular chirpsoliton  atdifferent fractional orders for further 

demonstration.The associate chirps δ ω (x,t) in  Equation (31) are plotted as a function of the coordinate 

ξ at various selected values for  the soliton frequency and soliton speed, which are shown in Figure7 (b). 

Theselected  parameters in the presented  igures cross with the constraints (30).

4.3. Darkchirpsoliton 

 The following assumption of the solution for the  integer- order ODE (13) possess dark  chirp  soliton 

solution for the governing  Equation (1).
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 The profile of modulus of ϕ1 (x,t) that considers the case μ+and P+  5 is depicted in 3D and 2 D at chosen 

parameters where the derivative order sare considered in intege rand fractional orders 

inFigure8.Furthermore, theeffectof thefractionalderivativeonthe evolution of the explored dark chirp 

soliton has been investigated where Figure9 shows the 3 D and 2 D plot of the modulus of ϕ2(x,t) that 

considers the caseμ −andP− 5 at different fractional derivative orders .Moreover ,the profile of chirping, 

ϕ1,2(x,t) (40)has been depicted as a function of the coordinatein  Figure10 at different values of the 

frequency  and the speed  of the soliton.
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 5. Comparison and discussions

 This study’s chirp soliton solutions show promise for a range of real-world uses, especially  in the field 

of optical communication systems, where their ability to form and maintain optical pulses promotes 

effective data transfer and signal integrity. Moreover, these solutions advance our knowledge of 

nonlinear wave dynamics, which has broad ramifications for a variety of physical systems, including 

B o s e – E i n s t e i n  c o n d e n s a t e s ,  fl u i d  d y n a m i c s ,  a n d  p l a s m a p h y s i c s . 

Thesesolitonsprovidenewpossibilitiesforthestudyofintricate, memorydependent events in a variety of 
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 scientific and technical domains thanks to the description  of them using fractional calculus. Chirp 

solitons are extremely useful for preserving waveform stability in optical systems and laser applications, 

such as materials processing and medical lasers, because of their stability and robustness. Open 

questions and several obstacles still exist, though. For real-world applications and long-term stability, it 

is crucial to comprehendthestability and robustness of chirp solitons under a variety of circumstances 

and perturbations. Experimental validation is typically a barrier in the translation of theoretical results 

into practical applications, so in order to confirm thepresenceandbehaviour of chirp solitons, real-world 

tests are required. It will take interdisciplinary cooperation in the fields of mathematics, physics, 

engineering, and materials science to fully realize the promise of chirp solitons. It is difficult and still 

unexplored to analyse chirp solitons in a wider class of fractional nonlinear partial differential equations. 

Finding the best parameter values for certain applications and comprehending how they affect soliton 

behaviour are still crucial issues in the industry. 

As mentioned earlier in this work, the study and exploration of chirp soliton solutions to the governing 

Equation (1) is presented for the first time in our work. Despite this, several works have been presented 

to  s tudy the governing Equat ion (1)  in  l i terature .  The tanh methodandthetanh-

cothmethodhavebeenappliedtoobtainnewsolitarywavesolutions for (1) in [44]. The fractional H-

expansion method and fractional projective Riccati expansion approach are utilized to extract analytical 

solutions based on the Mittag-Leffler  function for (1) in [45]. The authors in [46] investigated novel 

dark and other soliton solu tions and compared them with the existing results. In [47], new exact solitary 

solutions have been obtained with the aid of conformable derivative and the Kudryashov method.  

 6. Discussion  and conclusion 

 We have made important discoveries on the intricate dynamics of the space–time pFGI  equation under 

quintic nonlinearity and self-steepening. Numerous noteworthy conclusions have been drawn from thist 

horough examination.Bright,singular, and dark solitons are three different chirp soliton solutions that 

we have identified and thoroughly investigated. These solutions are important in nonlinear wave 

dynamics and have real-world  applications in fluid dynamics, nonlinear physics, and optics. 

Furthermore, to provide a morecomprehensive knowledge of the behaviour of the system, we presented 

a novel fractional complex travelling wave transformation that reduces the equation to an easier-to 

manage integer-order ordinary differential equation. Our examination of the integer-order ODE’s 

dynamical behaviour and equilibrium bifurcation provides important information about the stability 

and behaviour of solutions, illuminating the pFGI equation’s underlying dynamics. To improve 

comprehension, we have included graphical depictions of every solution that we were able to get for 

clarifying the physical properties and actions of the solitons when certain parameter limits are satisfied. 

Journal of Applied Mathematics in Science and Technology (Volume - 13, Issue - 2, May- Aug 2025)                               Page No. 60

ISSN 2986 - 0776



To gain a better understanding of how  fractional calculus shapes the behaviour of the pFGI equation, we 

also investigated the impactoffractional derivatives on the evolution profile of these solutions. Our 

results have practical ramifications beyond theory; the generated chirp soliton solutions are promising 

for various applications, especially in systems with quintic nonlinearity effects and selfsteepening. The 

design and functionality of nonlinear physical systems, such as optical communication systems, could 

be improved by these techniques. 

 Regarding future research directions, this paper provides several important avenues for investigation. 

Firstly, an expansion to higher-dimensional systems is necessary, which will shed light on the 

spatiotemporal evolution of the soliton behaviour in more intricate physical situations. Secondly, to 

comprehend the adaptability of chirp soliton solutions to various circumstances, a detailed examination 

of the impact of varied material qualities and nonlinear effects is necessary. It is also advised to perform a 

thorough stability analysis on chirp solitons to evaluate their resilience in real-world scenarios where 

waveform stability is essential. In addition, future research ought to concentrate on recognizing and 

creating practical applications, particularly in the fields of fluid dynamics, plasma physics, and optical 

communication.
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1. Introduction

Real-life problem of engineering and sciences gives rise to nonlinear ordinary differential equations ( 

ODEs) and partial differential equations ( PDEs). Non-linear system has varied range of engineering 

applications. Most of the real-life problems are convertible intononlinear mathematical models. 

Therefore, resolving such a system has its significance anddemands in-depth research. Researchers are 

motivated to develop and investigated effective methods and techniques to solve such dynamical 

systems, which exhibit nonlinearities.Yang et al. have shown nonlinear dynamics for local fractional 

Burger equation arisingin fractal flow [1], similarly, Yang, Gao and Srivastava have worked for non-

differentiableexact solutions for the nonlinear ODEs defined on fractal sets [2] and Dubey and 

Goswamihave solved the nonlinear diffusion equation [3]. In this regard, time-dependent nonlinear 

A B S T R A C T

In this study, time-fractional coupled Korteweg–de Vries (cKdV) equations are solved using an efficient 

and reliable numerical technique. The classical cKdV system has been generalized into thetime-

fractional cKdV system. We employ the local fractional homotopy analysis method (LFHAM) and the 

Adomian decompositionmethod (ADM) to propose an approximate solution for fractionalcKdV 

equations. Both approaches determinedfindings are comparedtogether. The findings clearly 

demonstrate that the suggested methods are appropriate and efficient for handling both linear and non

linear issues in engineering and sciences. To demonstrate the suggested approaches’ competencies, 

examples are provided. Convergent series form has been used to make the solutions. The relevanceof the 

techniques is illustrated through graphic representations ofthe solution
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coupled Korteweg–de Vries (cKdV) equations attracted a lot of study interest. A part from the nonlinear 

system, we see frequent presence of ODEs, PDEs of fractional orde

in many fields like fluid dynamics, biology and physics. Numerous disciplines, including mechanics, 

electrical, chemistry, biology and economics, particularly control theory, signalimage processing and 

groundwater issues, have benefited greatly from the use of fractionalcalculus. Many phenomena 

occurred in engineering, physical and medical science problems can be described by fractional order 

ODEs, PDEs effectively. Khan et al. have workedfor the numerical solution of advection–diffusion 

equations involving Atangana–Baleanutime fractional derivative [4], Baleanu et al. have worked on the 

mathematical modelling ofhuman liver with Caputo–Fabrizio fractional derivative [5], Defterli et al. 

have solved problems related to accelerated mass-spring system by fractal treatment [6]. Many 

researchershave been working to find analytical approximate solution of local fractional PDEs [7–11].

Local fractional calculus operator is first introduced by Kolwankar and Gangal[12] which is established 

on the fractional derivative of Riemann–Lioville sense. Nondifferentiate functions can be easily 

handled by above-mentioned operators. A lot ofscholars have also worked on the development of the 

fractal fractional derivative; in addition to this, He et al. have given new promises and future challenges 

of fractal calculus fromtwo scale thermodynamics to fractal variational principle [13].

Numerous numerical and analytical techniques have been used by researchers during the past 20 years to 

get analytical or approximate solutions of local fractional PDEs, such as the local fractional Laplace 

transform, local fractional variational iteration, localfractional homotopy perturbation, local fractional 

Laplace homotopy perturbation, localfractional reduced differential transform methods, Laplace 

variational iteration methodsand so on. Dubey et al. have solved Klein–Gordon equations by using 

homotopy perturbation Mohand transform method [14], Yang et al. have used local fractional series 

expansionmethod to solve Klein–Gordon equations on Cantor sets [15], Wang et al. have appliedlocal 

fractional function decomposition method for solving inhomogeneous wave equations with local 

fractional derivative [16]. Similarly many research works have been donein this context [17–21].

This study’s main goal is to find a local fractional derivative solution to the generalized fractional cKdV 

equation.

In the exploration of nonlinear physical processes, the investigation of travelling wave  solutions for the 

nonlinear system of equations is a vital step. The fluid flow beneath apressure surface is visible along 

lakeshores and beaches as shallow water waves. For thepast three decades, researchers have been 

working on a mathematical model of this phenomenon in a variety of science and engineering fields, 

including oceanography. For example, the long-wave short-wave interaction equation [22–26], the 

Kadomtsev–Petviashvi l iequat ion  [24] ,  the  Gear–Grimshaw model  [25]  and the 

Schrödinger–Boussinesq equation[26] are some of the mathematical models that are presented in this 

context. To define a wide range of physical occurrences utilized to simulate the interaction and evolution 
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 of non-linear waves, the study of the KdV equation is important [27]. Waves on shallow water surfaces 

are quantitatively represented by the KdV equation. Boussinesq first presented theKdV equation in 

1877, and Diederik Korteweg and Gustav de Vries later rediscovered it (1895) [28].

Now, we write fractional-order KdV equation:
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This research work is a good discussion on the solution of nonlinear fractional cKdV equation. Hirota 

and Satsums introduced the cKdV equation in 1981. They discussed theinteraction of two long waves 

with different dispersion relations [29].

The function of trigonometric transform approach, the F-expansion approach, the homotopy 

perturbation as well as its transformation approach, and the Adomian decomposition method (ADM) are 

the primary methods that have been used by various author

to solve coupled equations [30, 31]. Furthermore, the local fractional reduced differential transform and 

local fractional Laplace variational iteration methods were also used by Jafari et al. [32, 33] to find 
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 approximations of solutions for cKdV equations.

They have solved the following system of fractional cKdV equations:
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Due to its frequent occurrence in numerous real-world problems, nonlinear cKdV equations have been 

the subject of many research studies; therefore, understanding its generalized form is significant. In this 

research, authors investigate the most general kind ofcoupled nonlinear fractional KdV equation.

Consider the following the n-generalized fractional cKdV equation:

The focus of this study is on the fractional cKdV equations and the use of the ADM and local fractional 

homotopy analysis method (LFHAM). Numerous problems in the realworld, including those involving 

magma movement, surface waves, Rossby waves, internalwaves in a fluid with stratified density, and 

plasma waves, depend on the KdV equation.Maitama and Zhao introduced the local homotopy analysis 

method initially [34], LFHAMis a very helpful tool for solving the differential equations. By carefully 

choosing the parameters h and H, this approach LFHAM is particularly effective in regulating and 

controlling the convergence of the solution [35].

A numerical technique based on Adomian’s invention [36] of the ADM is presented in this study as an 

approximate method for solving fractional cKdV equations. The ADM isa potent method that offers 

effective algorithms for approximate analytical answers andnumerical simulations for practical 

applications in applied sciences and engineering [37,38].

Both approaches are excellent techniques for solving generalized nonlinear fractional differential 

equations, even though the outcome is expressed in terms of an infinite The method’s drawback is that 

numerous terms from the infinite series must be taken intoaccount to obtain high accuracy. To develop 

an analytical approximate solution for local fractional PDEs, numerous scholars have been working 
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In this section, some basic expert duties are covered. For a moment, suppose that Herrmann and Hilfer’s 

fractional partial differential conditions, like time-fractional NS conditions, are not completely 

predetermined by applications in a variety of scientific a  planning fields. Recently, El-Shahed and 

Salem conducted a sporadic presentation of NS circumstances in 2005. For summing out-of-date NS 

conditions, makers employed Laplacechange, constrained Hankel change, and finite Fourier Sine 

change. By combining HPMand LTA, Kumar et al. deductively addressed a nonlinear partial model of 

the NS condition. By using the homotopy evaluation technique, Ganji et al., in addition to Ragab et 

al.,has resolved non-straight time fragmented Navier–Stokes system. ADM was developed byOdibat, 

Momani, and Birajdar to provide numerical estimates of the time-fractional NScondition. While 

Chaurasia and Kumar had inclined to a comparative condition by combining limited Hankel change and 

Laplace change, Kumar et al. obtained a canny plan of thetime-partial NS condition utilizing a 

combination of ADM and Laplace change. To handle nonlinear and instantaneous ODEs and PDEs, M. 

Rawashdeh and S. Maitama introducedNDM in 2014. The partial order Whitham–Broer–Kaup 

conditions, fractional order heatand wave conditions, fractional actual models, fractional order PDEs 

with relative deferment, and the fractional order dissemination conditions are just a few of the real-

worldissues that were concentrated using NDM.

The sensible strategy of fractional soliciting NS circumstances is emphasized on the ongoing creation. 

Since a long time ago, examiners have been interested in the arrangement of typical NS conditions. 

Actually, the main area of agreement between researchersand mathematicians is the intelligent designs 

of the fragmented request NS condition. Thiswas the active endeavour to develop or promote the 

ongoing systems for the strategiesof NS soliciting that was not complete. A noteworthy portion of them 

have developedinnovative methods to deal with Navier–Stokes of fragmentary order. In this way, 

streamresearch efforts make a sensible addition to the Navier–Stokes partial order conditions’logical 

framework.

In more recent works, Chu et al. used the variation iteration transform approach along with Caputo 

derivative and Laplace transform to solve the problem. Singh and Kumarused the fractional reduced 

differential transform technique to get the approximate solution of the system, whereas Kavvas and 

Ercan used a completely different strategy to findthe solution of the Navier–Stokes system. They made 

use of the momentum equationsystem.

In this paper, we performed logical operations, particularly the Laplace transformation approach, but we 

also assessed them and presented an argument in favour of the application of the recommended 

calculations. In this work, we first apply existence and onenesstheorem to show the existence and 

oneness of result. Using the Laplace transform, wewill continue to solve the problem iteratively. In order 

to find an approximate solutionof Navier–Stokes system, this work employs a unique technique and 

strategy. Our focus isin fact primarily on the stream, the effects and adjustments brought about by the 
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[39–42].

Definition 1.1: The local fractal derivative for a real-valued function, L at g = g0 is defined as [43, 44]

Section 1: Introduction

Section 2: Existence and Oneness of the Solution

Section 3: Analysis of the methods and applications

Section 4: Conclusion

2. Existence and oneness of the solution
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3. Analysis of the methods and applications

Here, authors provide a quick overview of the techniques and applied to n-generalized cKdV equations.

3.1. The local fractional homotopy analysis method

Consider the following generalized fractional cKdV equations:

ISSN 2986 - 0776
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3.2. The Adomian decomposition method

The ADM for the following equations is introduced in this section

v − Nv = f ,                                                        (40)
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where N represents nonlinear operator and v represents unknown function. Equation (40) is called 

nonlinear system. Now authors will find approximate solutions for (40).Let that the solution to (40) is 

unique with the form:
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Geometrical representation:

The solutions to Equations (19) and (20) are described geometrically below, when n = 1 and m = 1 for 

different values of ν such as ν = 0.5, 0.8, 0.99: 

4. Conclusion

In this study, authors examine the nonlinear local fractal cKdV equation solution. Authors have worked 

with two methods named as LFHAM and ADM. Both methods have beenadapted to obtain the solution 

of cKdV equations. This LFHAM is highly effective in regulating and controlling the solution’s 

convergence through appropriate parameters h andH selection. The achieved solutions, which may be 

expressed as a closed for any value of r,were organized as an infinite power series. Illustrations show that 

the outcomes obtainedby LFHAM and ADM are in good accord. Graphical depictions of the solution 

show howthe method is applicable. This work exhibit the applicability of both techniques in 

solvinggeneralized nonlinear fractional coupled differential equations,further these techniques can be 

used to attain approximate solutions of other nonlinear problem too.
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