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MOMENTS OF ORDER STATISTICS OF THE POISSON-
LOMAX

BANDER AL-ZAHRANI1, JAVID GANI DAR AND MASHIAL M. AL-SOBHI
ABSTRACT

The Poisson-Lomax distribution has been proposed as a useful reliabilitymodel for analyzing lifetime
data. For this distribution, some recurrence relations areestablished for the single moments and product
moments of order statistics. Usingthese recurrence relations, the means, variances and covariances of all
order statisticscan be computed for all sample sizes in a simple and ecient recursive manner.

1.INTRODUCTION

Order statistics arise naturally in many life applications. The use of recurrence relations for the moments
of order statistics is quite well known in statistical literature (see for example Arnold et al. [2], Malik et al.
[6]). For improved form of these results, Samueland Thomes [7] have reviewed many recurrence
relations and identities for the momentsof order statistics arising from several speci ¢ continuous
distributions such as normal,Cauchy, logistic, gamma and exponential. Balakrishnan et. al [11] and
Balakrishnanet. al [8] studied recurrence relations and identities for moments of order statistics forspecic
continuous distributions. Recurrence relations for the expected values of certainfunctions of two order
statistics have been considered by Ali and Khan [1] and Khan et.al [5]. The moments of order statistics
have some important applications in inferentialmethods. For an elaborate treatment on the theory,
methods and applications of orderstatistics, interested readers may refer to Balakrishnan and Rao [9] and
[10].The Poisson-Lomax (PL) distribution, proposed recently by Al- Zahrani and Sagor [3],is a useful
model for modeling lifetime data. The distribution is a compound distributionof the zero-truncated
Poisson and the Lomax distributions. See also, Al-Awadhi andGhitany [12] for a discrete extension of

this model.

Definition 1.1. We say that a random variable X with range of values (0, co) has

a Poisson-Lomaz distribution, and write X ~ PL{a g, }), if the survival function
(sf) 1s
_ 1 — g~ Mi+8z)7"
(1.1) F[I;a,,ﬁ,l]:ﬁ >0 o 8 A= 0
— -

The probability density function (pdf] assocated with (1.1) is expressed in a closed
form and is given by

afA(1+ ﬁm]—(ﬂ—l) e—AM1+pe)~"

(1.2)  flzie B A = >0 a 8 A>0

1—e=?
It is easy to observe that f(z) and F(z) = 1 - ﬁ'(X:l satisfy the following characterizing
relations:
(1.3) flz) = ca(1+ Bz)" @ P(2) + (1 + po)~(@FY),
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where ¢, = affA and ¢; = ce” A/(1 — e~*). The density function given by (1.2) can
be inferpreted as a compound of the zero-truncated Poisson distribufion and the Lomax
distribution. Mathematical properties of this distribution can found in Al-Zahrani and
Sagor [3]. Here, we will study the distribution of order statistics and establish some
recurrence relations for the single and product moments of order statistics for the Poisson-
Lomax distribution. Theserecurrence relations will enable the computation of the means,
variances and covariances of all order statistics {or all sample sizes in a simple and effi cient
TECUTSIVE ITLANDEr.

2. DISTRIBUTION OF ORDER STATISTICS

Let X, X, ---, X, be arandom sample of size n from the PL distribution in (1.1)
and let X,.,, - - 6 X,., dencte the corresponding order statistics. Then, the pdf of X, .,
1<r<mn isgiven by (see David and Nagaraja [4] and Arnold et al. [2])

(2.1) frmlz) = E’rlﬂ[F(z]]"l[l — Flz)|" " flz), 0<z<oo
where Cy n = [B(r,n—r + 1)]7!, with B{a, b) being the complete beta function.

Theorem 2.1. Let F(z) and f(z) be the cdf and pdf of a Poisson-Lomaz distribution
for a random variable X. The density of the rth order statistic, say fj, ]I::I!:I 15 JIVeEn
by

r—ln—r+i

frm(z) = aBAGaY Y (TZI) (n_;ﬁ)

i=0 §=0
(_1:'-.'+j|:1 | ﬁzj—[ﬂ:+1] g—Mit+1)[1+8=z)7"
|:1 _ E—Jm]n—"'+i+1

(2.2) P

FProof. First it should be noted that (2.1) can be written as follows:

23) () = Con 3 (7 )1V IR @I 5(2)

then the proof follows by replacing the sf, F(z), and the pdf, f(z), of X ~ PL{a 8, A)
which are obtained from (1.1) and (1.2), respectively, substituting them into relation
(2.3), and expanding the term (1 — e~ *1+#2)7% )" =744 yging the binomial expansion. [

The distributions of the extreme order statistics are always of great interest. Taking
r =1 in equation (2.2), yeillds the pdf of the minimum order statistic

A1 —[etl] _a1+8z)"" _ aqn—1

fim(z) = nafl (14 fa) - ‘ [1 — e~ HitAe) .
(1—et)

and if we take r = n in equation (2.2), then this yeilds the pdf of the maximum order

statistic.

The joint pdf of X;., and X, for 1 < r < 5 < n is given by (see eg. Amold et al
[2])
(24) fram(z,y) = CranlF(2)]" " [F(y) = Flz)]""7 1 = Fly)]"~* f(z) f(y),

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025) Page No. 2



ISSN.1857-8365

where
!

(r—1){s=r—-1)l[{n-s)'
substituting (1.1) and (1.2) into (2.4), one can obtain the joint pdf of the rth and the
sth order statistics from the Poisson-Lom ax distribution. It is as follows:

. C"”ﬂlzrxﬁl]
fr,s:ﬂ( .yj —(1 e :I

, e r-1 , R . =18
w [E—M_1+.ﬂm_| _ e‘*] [E—l|_1+.ﬂy_l _ e—Al+8z)

Cf,s,ﬂ =

—00 < T <Y < 00

[Iyﬁ +I:I+y],'5'+1] (et1] g=M[1+8) ™" +(1+8y|7"}

—r=1

x |1 - e‘J‘[1+.ﬂ1-']'“]ﬂ_s

3. SINGLE MOMENTS

In this section we first give a closed form expression which is derived easily for the
Bth k=1 2 - - moment of the ¢th order statistic from the Poisson-Lom ax distribution.
This formula will be useful in the phase of computation of the identity given.

Theorem 3.1. Let Xy, X7, - | X, be a random sample of size n from the Poisson-
Lomaz distribution, and let X.qp < Xom € - € Xy denote the corresponding order
statistics. Then the kth moment of the rth order statistic for k =1,2,- -, denoted
by p!.,','l',{, 15 gwen as

ul¥ = B[xE] = ac;ﬂzz Z (”—f)( )(th)(_1]j+i+i+m+1

) (m!,ﬁ""[ —e)"Y (k—i- a- am)

e E S )

_qyiti+mtl Am+l [1" +i-1- ;]m p— M
(3.1] X|: 1:' (m!,ﬁk“—ﬂ_ljh'-j_l(k—i—cr:—q:mj .

Jor B <1+ o+ am.
Proof. We know that
(¥) = - b rn d
Hym ﬂ z" frn(z)dz
= G [ & [F@ - Fle)" flz)de
1}
- cf (1 + pa)” U [F(2)] [1 - F(2)]* 7 da
1}

[3'2] +Cr:ncﬂﬁm Ikl:l + .EI]_[DH-I] [F[I:I]r_l [1 — F[z]]""‘ dz.
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[3'3] ,H-:.",.L = Sr:n'::l *rl + Cr:nﬂﬁlrz.

where [} can be worked out as follows

nL = ﬂm 2*(1 + Ba)"* T [F(2)] [1 - F(2)" 7" da

_ ﬂmz"(l+ﬁzj_[“+“ ]E( )

_ “;: (n; 1") (1) lmzkil t gz)- et (1 B

S{GUIHIHETE

y AT (e 4+ =) e M
miptk(1—e ) T (k—i-a-am)/

Similarly,

ae~ M A ETEN Z no i fk r+7-1
- e 2 2 ()6
— -

T

. Xm(r 4 j—1— O™ eN
migk(l—e )" k—i—a-am)/

Substituting Iy and I7 into {3.3) yields (3.1).
Mow we derive recurrence relation for single moments.

Theorem 3.2, Fork >14+a,and 1 <r <n -1

B ok—i—o

= Yy k_i_a(f)(k_;_a)(—lll‘ﬁf‘“‘l

i=0 =0

(3.4) < (errupyn = erll) = cafn = +1)

Proof. Again we use equation (3.2)

[ %]

My = Ir—_*'lr:'n.':l JT1 + I:':'I:':1'1.|:21T2.

where I) is as before:

V' [F(z)) dz

1 — e=Mi+pz)== T
= dz

) |:_ 1:|j+1:+= +m+1

|_‘i‘|
lu"r 1mn +|:'.'3?‘1|H-,. n— 1)

I = fum (1 + gz)~'* P (F(z))" (1 - F(2))"" dz.

Now using integration by parts we obtain

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025)
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T o ot -t L LY L e T B O

i=0 j=0

~n-n) [ R - R @) )

Similarly,
x {Ef ~1) f " ol [F(e) 21 - Fe)" f(e)da
~n-n) [ @I - P (e)de |

Substituting I, and I, into (3.3) yields (3.4). O

4. RECURRENCE RELATIONS FOR PRODUCT MOMENTS

Theorem 4.1. For, ky >14+aand s—1 > 2

_ by ko—i—o '](lz—i—ﬁ]
.“':I}sﬂ ' Z Z ko —t1— o 'ﬁj " 1{(E1+52:|ﬂ#-r“{|1
(® :I

(4.1) (st ea)maltil oy +es (s + 0 it - e - s+ |
FProof.

bt - cf f 1y [P ()] P () - Pl
X[1 = F(y)]" " f(2) £ (y) dyde,
where Crsm = nl/(r — 1)1 (s = 1 —1] (n — s)!. Let I be as follows:
1 - f f ahyb [ (2)] U F (y) - F(2) "
x[1— F(y)]""" f(z) f(y) dydz
(4.2) - f ot [Fla)] " f(a) Lodz,
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whiere
(=]
Ix = [ y® | Fly) — Fle][*~ 1 = Fly]|"*f(v)dy
=
Using (1.3] we have:
Iy = clfyh[l FRy) T Ry = Flz)*7 7L = Fy) " F (y) dy
- [=_u]
mf v (14 By) O Fly) = F 2]~V = F )" dy.
=
or it can be writien as:
(=]
Ix = .:lf g% (14 gy) "V F(y) = Flz)]*7 7L = F (g " dy
z W . " . . . . o . . w
—.:lf w1+ fy) Ry = Flz) "7 7 = Flu)|" " Yy
zl:-:l
|..~=f w1+ By )" F(y) = Fle) "7 71 = Fly)|" " dy.
)

By using iniegration by paris, we obian:

Ko —i —x

E Z (—1)igi—ka— l(h) (Ji:z—j:'—a)

— Ky —1— o H 7
[n_u] . 1
:{{[cl F ol [n —a]f v F(y) = Flz)]* "7l = F(y)|"~"f[v) dy
=
[ n] . 1
—(ey + &) I.a—r—l]f VIF(y)=Flz)]" 1 =F(w)]" 7 f [v] dy
[w_u] . - 1
bey [m— 2 4 L'f v |[Fly| = Fl)"7 7 L= Fy]" 7 f [y] du
zm | B
—cy |5 —r —1]f VIF(y]—F(z)] "7 71 —Fl.y.l."“.fl.y.ldy}-
=

Substituting [x in (4.2] and then info (4.1) produces the desired resuli. O
Corollary 4.1,
. bz lz—i—no :l (l‘:z—z—njl e
B —fa — ' W
v s 1:r|. = E z k; —i—a | l]ﬁ.i' k 1{'.':' I E‘:|'|"|-,[-II,-,- 1m—1

i=0 =0
T
—E'1|ﬂ—!‘||[.|:£?'}]:!n—||:'1 f E'2|'|"|-,[.|I;I; ;.-.__}1] i |:'1|'r'l. rll[,;[k }]}_

FProof. The proof follows by subsiituting 2 = r + 1 into equation (4.1], the mst of proce-
dure 15 similar to that of Theorem 4.1. O

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025) Page No. 6
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5. Conclusion

In this paper we studied the Poisson-Lomax distribution from the order statistics viewpoint. Also we
considered the single and product moment of order statistics fromthis distribution. We established some
recurrence relations for both single and productmoments of order statistics. Using these recurrence
relations, one can easily compute the means, variances and covariances of all order statistics for all

sample sizes in a simple andecient recursive manner.

References

[1]A. A. Ali, A. H. Khan: Recurrence relations for the expected values of the certain function of two order
statistics, Metron, LVI(1998), 107119.

[2] B. C. Arnold, N. Blakrishan, N. H. Nagraja: A rst course in order Statistics, John Wileyand Sons,
New York, 1992.

[3] B. Al-Zahrani, H. Sagor: The Poisson-Lomax distribution, Colomb. J. of Stat., 37 (2014),223243.

[4] H. A. David, H. N. Nagaraja: Order Statistics, 3rd Edition, Hoboken, NJ: Wiley, 2003.

[5] A. H. Khan., M. Yaqub, S. Parvez: Recurence relations between moments of order statistics,Naval.
Res. Logist. Quart., 30 (1983), 419441.

[6] Mailk H. J., N. Balakrishnan, S. E. Ahmad: Recurence relations and identities for moments of order
statistics: Arbitrary continuous distributions, Commun. Statist. Theo. Meth., 17 (1998),26232655.

[7] P. Samuel, P. Y. Thomas: An improved form of a recurrence relation on the product moment of order
statistics, Commun. Statist. Theo. Meth., 29(2000), 15591564.

[8] N. Balakrishnan, H. J. Malik, S. E. Ahmed: Recurrence relations and identities for moments of order
statistics-11 Specic continuous distributions, Commun. Statist. Theo. Meth., 17 (1988), 265726 94.

[9] N. Balakrishnan, C. R. Rao: Handbook of Statistics 16 - Order Statistics: Theory and Methods,
North-Holland, Amsterdam, The Netherlands, 1998.

[10] N. Balakrishnan, C. R. Rao: Handbook of Statistics 17 - Order Statistics: Applications, North-
Holland, Amsterdam, The Netherlands, 1998.

[11] N. Balakrishnan, Z. Xiaojun, B. Al-Zahrani: Recursive computation of the single and product
moments of order statistics from the complementary exponential-geometric distribution, to appear in: J.
Stat. Comput. Sim., DOI:10.1080/00949655.2014.925112, 2014.

[12] S. A. Al-Awadhi, M. E. Ghitany: Statistical properties of Poisson-Lomax distribution and its
application to repeated accidents data, J. Appl. Statist. Sci., 10 (2001), 365372.

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025) Page No. 7



ISSN.1857-8365

REMARK ON TRIGONOMETRIC FUNCTIONS

SHIGEYOSHI OWA, YUKI NAKAMURA, SHUNYA AZUMA, YUMA SHIBA
AND YUSUKE TOKURA

ABSTRACT

Noting the derivatives for functions sinz and cosz, we assume the fractionalderivatives for sinz and cosz.
Applying the fractional derivatives, we consider generalizedexpansions for functions sinz and cosz.
Further, the generalized expansion for f(z) = eizis also discussed.

1.INTRODUCTION

Let A(a) be the class of functions f(z) of the form

f{:-:l an I!'I[l._ +ﬂ]—-"+l t+a -e::-l-." i Zﬂn-"-'-n
n=(]
for 0 < a < 1 which are analytic in the open unit disk U= {z e C:|z| < 1}. fa =0in
(1.1), then fiz) € A(0) becomes

flz) =ap+ a1z +azz® +- Zﬂ"z
n=I0
and that
f I: ), M0 ., SN

This is Taylor expansion for f(z) A{[]Ijl. Therefore, for f(z) £ A(xn), we need to consider
the generalization for Taylor expansion of f(z).

To discuss Taylor expansion for f(z) in the class .A(a), we have to introduce the frac-
tional calculus (fractional integrals and fractional derivatives) defined by Owa [1], Owa
and Srivastava [2], and Srivastava and Owa [3].

Definition 1.1. The fractional integral of order « is defined, for an analytic function f{z)

in U, by

ot th it s ' = f(t)
D;*f(z) i e (e > 0),

where the multiplicity of (z — ) is removed by requiring log(z — t) to be real when
z—t >0

Definition 1.2. The fractional derivative of order o is defined, for an analytic function f(z)

in U, by
fal _ i x—1 e aa 1 i : .ﬂ:f]
D= 1z) dz S I'(1 — a)dz (L (= — t}“‘dt) :

where 0 < & < 1 and the multiplicity of (z — t) ™™ is removed as Definition 1.1 above.

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025) Page No. 8
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Definition 1.3. Under the hypotheses of Definition 1.2, the fractional derivative of orde
n + o is defined by
d"‘

prta Y
z "ﬂ:z-] dE'TI.

(D7 f(2)),
where0 < a<landn e M= {0,1.2,---}.

By means of Definition 1.2, we have that

d d 1 =z tﬂ+f|.
pagotn _ Dr:—l otny il
= dz { £ } dz {l—'{l—ﬂ} o (=—1)F }

1 d [ fPL—getm iy
'rii—rﬂﬂ{” f o d‘;} b=

B 1 d MNa+n+1) ,
T I(1 —a)dz I'(n+1)

where B(r.y) is the beta function. Thus, we obtain, for f(z) € .A(a), that

i} = Tl - Fn+n+l T
DZf(z)=DZ (Zﬂuf = )=Z{r|:ﬂ—_|_1‘]ja“: .

n=i{l n=(}

I[z""'lﬂ{l —aa+n+l)) =

This gives us that

)
0= l'_{n % 1}_
Since )
D2 F(0) = Tla + 2)ay, a; =%ﬂ—i|:;:;]_
Further, we obtain that
D2 f(0)
"“Tla+tn+1)
forl<a<1landne M,  With the above, we can write that
= DEt) ..
(1.1) f[z}:Z e 8

n=il

for f(z) £ Ala) with z # (. Therefore, we use this expansion (1.1) for f(z) £ A(a).

2. EXPANSIONS FOR TRIGONOMETRIC FUNCTIONS

Let us consider a function f(z) = sinz for all z £ U. Then it is easy to write that
f'(z) = cosz = sin (:-: - %) .

f(z) = cos (E + g) = sin(z + ),

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025) Page No. 9
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and that

(2.1) Fim){2) = gin {z+§:} (n € Ng).
With (2.1), we may assume that

(2.2) D f(z) = sin [:3 + %r} (0<a<l)
and

(2.3) Oe+n f{z) = sin (: e : - I)

forD < a < 1and n € Mp.
Remark 2.1. Using the formula (2.2), we have
() = D= (D2f(z)) = D2~ (sin (2 + Sx) ) = sin (= + Zn)
for0 < a < landn c M.
Now, we derive
Theorem 2.1. If the equation (2.2) is true for f(z) = sinz, then

(2.4) sinz = Zlm+ (z € U—{0})

where ) < a = 1.
Proof. By (2.2), we see that

D £(0) = sin [:gﬂr:] (0 < a<1)
and by (2.3), we have that
D=+ £(0) = sin ( e
This shows us (2.4) with (1.1). [
Corollary 2.1. If the equation (2.2) is true for f{z) = sinz with a = 3, then

rt*.'r) 0=<a<lne M)

sin |22 l*.':}

ll'l_—
) Zﬂ ||[u+i]

2T 2 22 o o4 o5 .

WSy 2 3 4 ;
14 =2 — i + + R EN

( 3° T35 357 3:6-7-9 3.5-7-9-11" )

1-"+*

-
Jor z e U — {0}
MNext, we try to consider for f(z) = cosz (z € U). It 15 clear that
; o E
iz = —a-.m3=-::-|:u-..{_+ E:]'
£"(2) = —sin (2 + = ) = cos(z + 7).
and that
(2.5) fz)=com (24 27)  (neN).

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025) Page No. 10
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With the above, we can assume that

(2.6) D! flz) =coa (: - %1'::]
and
(2.7) D40 f(z) = cos (: + ";f ”11')

for0<a<landn e N,
Remark 2.2. With the formula {2.6), we see that
£9(e) = D22 (D2 f(2) = D3 (oon (= + #)) = s (= + 2)
Jord < a< 1land n € M.
For a function f(z) = cosz, we have
Theorem 2.2. If the equation (2.6) is true for f(z) = cosz, then

— cos [ 25=7)

(2.8) ~~—Zlm+"+”~“ (e U-{0})

with 0 < o < 1.

Proof. Using (2.6), we have

(2.9) D f(0) = cos I[%:':) (0<a<l).

Also, by (2.7), we see

(2.10) De+n £(0) = cos (“ ;’ ’tw) (0<a<1),z€U-{0}).

Putting (2.9) and (2.10) in (2.5), we prove the equation (2.8). [

Making o = 1 in Theorem 2.2, we give
Corollary 2.2. If the equation (2.6) is true for o = 2, then

Co8z = Z m-:—.-l{—jl'—:rr] zht+d

T
e I'(r+3)
=»-"E,E o 22:!+ 22 - o A g6 agn 0
ﬁ 3 a-0 3-0-7 3-h-7-9 J-h-T-9-11
for =z € U — {0}

Finally, we derive for f{z) = .
Theorem 2.3. If the equation (2.2) and (2.6) are satisfied, then we hove
iE - |::_+_ﬂ]+1|1.n{“ "T::I e o
(2.11] E _E Floe+n+1) 3 (= 0

==}

Jor 0 < a < 1.
Letting o = L in (2.11), we see
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Corollary 2.3. [f the equations (2.2) and (2.6) are satisfied for o = -_lg then

- ? ? ? 22 ] ?? k:
.-"=£;- (14+i) — =(1 —d)z — =—{14i)z" + (1 — i)z
'l.--:': 1 1{5

3-0-7

(i) ) P
3a.7.ar T Ty Y )
forz € U - {0}

-+

i 2h
)
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ON THE DETERMINATION OF JUMP BY THE
DIFFERENTIATED CONJUGATEFOURIER-JACOBI
SERIES

SAMRA SADIKOVIC”’

ABSTRACT

In the present paper we prove a new result on determination of jump discontinuities by the differentiated
conjugate Fourier-Jacobi series. Further, we establish Cesarosummability of the sequence of partial
sums of the conjugate Fourier-Chebyshev series, aspecial type of Fourier-Jacobi series which are
obtainedfor o=s=-.

1.INTRODUCTION

Conjugate Fourier-Jacobi series was introduced by B. Muckenhoupt and E. M. Stein,
see [6], when a = /3, and by Zh.-K. Li, see [4], for general o and 3. "Conjugacy" is an
important concept in classical Fourier analysis which links the study of the more funda-
mental properties of harmonic functions to that of analytic functions and is used to study

the mean convergence of Fourier series, see [11].
Let P.,E“""” (z) be the Jacobi polynomial of degree n and order («v, 3), «, 3 > —1, normal-
ized so that Pé““ﬂ{l} = ("T?). They are orthogonal on the interval (—1,1) with respect

to the measure dj, g(x) = (1 — z)*(1 + z)Pdz.

Define R,E,f*""ﬂ'(:vj = ii:jgf;, and denote by L,(a, 3),(1 < p < o) the space of func-

tions f(x) for which || f||, (a5 = {f_ll |f(;r:)|Pd,u.(_!__3(1?j}f% is finite.
For functions f € L,(a, 3), its Fourier-Jacobi expansion is

f(z) ~ ) Fin)u{#) RiE)(z),
n=>0

where

~ 1 r
f(n) = /_ 1f(y)REI‘“‘”(y)dﬁu.s(yl,

are the Fourier coefficients and

1
o = { [ (R )Pt )} ~
S, |

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025) Page No. 13



ISSN.1857-8365

With & = cosf, 8 € (0, 7). in an Equ.ivalent way Fourier-Jacobi expansion is given by

(1.1) Z ‘|" T ;_,,,.':“' "]'Ji":'-" i'{u::«sl’:l'}:

fa={ll

where

f{n} — f f[g]ﬂ',:f'd-'{t:m whdpa ale),

(1.2) r_l_;}l"t--'?] s {f [Hlf-ﬂr I'TI{'_ L"f"'F]:EdiIr:-S':t.?:'}_l I H'.'!n-|-1:
and correspondingly dy, a(#) = 2°7 +A+1 g dadl @ RA41 'F-r.fﬁ'
po By ay 3

To the Fourier-Jacobi series of the form (1.1), its conjugate series is defined by

(1.3) fie) ~

EH_,Ir rt],..,["Jr A E':“H rl+l|{'_ o5 ) sin 8.

1= |

2

Denote by S'ff"i"{f ) the n—th partial sum of (1.1), and by 5. ?][L:r} the n—th
partial sum of (1.3), where r = cos8. If a = 8 = % the corresponding Fourier-Jacobi

series becomes Fourier-Chebyshev series, so by 5; i 2.-%) ( [.x) we denote the n-th partial
sum of the Fourier-Chebyshev series of [.

Also, throughout this paper we use the following general notations: Lla, b is the space
of integrable functions on [a, b] and Cla, b] is the space of continuous function on [a, b
with the uniform norm || « ||zje.ty. We. b is the space of functions on [a, ] which may
have discontinuities only of the first kind and which are normalized by the condition
flz) = 3(flz+) + f(=-)).

In this paper first we give a review of the results on determination of jump discontinu-
ities for functions of generalized bounded variation by the differentiated Fourier series,
and then we prove new results on the determination of jump discontinuities by the dif-
ferentiated conjugate Fourier-Jacobi series. Further, we prove that the sequence of the
conjugate partial sums of Fourier-Chebyshev series is Cesaro summable to 0.

2. JUMP OF A FUNCTION AND DIFFERENTIATED FOURIER SERIES

The knowledge of the precise location of the discontinuity points is essential for many
of the methods aiming at obtaining exponential convergence of the Fourier series of a
piecewise smooth function, avoiding the well-known Gibbs phenomenon: the oscillatory
behavior of the Fourier partial sums of a discontinuous function.

If a function f is integrable on |-, 7|, then it has a Fourier series with respect to the
trigonometric system {1, cos i, sin nx )22 . and we denote the n-th partial sum of the
Fourier series of [ by S,(x, f), i.e,

anl f)

Salz, f] = >

+ 3 (ax(f) eos kr + by(f)sin k),

k=1
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where a,(f) = % [ fit)cos kt df and by(f) = % [ fit)sin ktdt are the k—th Fourier
coefficients of the function f. By 5, (z, f) we denote the n—th partial sum of the conjugate

series, i.e.,

Sz, f) = Z[.:tk[j'] sin kx — by f) cos kz).
w1

The identity determining the jumps of a function of bounded variation by means of
its differentiated Fourier partial sums has been known for a long time. Let fir) be a
function of bounded variation with period 2=, and 5, (x. f) be the partial sum of order n
af its Fourier series. By the classical theorem of Fejer [11] the identity
(2.1) im SalZA) _ Loy o) flz—o))

EL—h 11 m
holds at any point .

Obviously, Fejér's identity (2.1) 15 a statement about Cesaro summability of the se-
quence {kby coskr — kapsinkr}, aix = ax(f) and bp = bi(f) being the k-th cosine
and sine coefficient, respectively. As it is well-known, a sequence s, is Cesaro or (1)
summable to s if the sequence &, of its anthmetical means converges to &, Le. a7, =
ap+ 81 + ...+ 8n

n+1
Analogously, the sequence s, is (. 2), @ > —1, summable to s, if the sequence

— &, 1 — O30,

oy 1 — fn—k4+o—1
Ty = = [H;-ﬂ] E n _j: Ak
converges bo s.
The concept of higher variation was firstly introduced by N. Wiener, see [10].
A funetion f is said to be of bounded p-variation, p > 1, on the segment |a. &) and to
belong to the class V,a. b] if

-
V2y(f) = sup {1 - flaa)P} <o,
i, b i
where 11, , = {a = = < 7y < ... < x, = b} is an arbitrary partition of the segment [a, b
| ol f) is the p-variation of f on [a, b
B. L. Golubov, see [2], has shown that identity (2.1) is valid for classes V.

Theorem 2.1. Let f(x) € Vp, (1 < p < oo) and r € Hy. Then for any point © one has the
equation

o Smf) ()
Fa— mer+1 E |:2:|'+ I.:I':'l-

(flx +0) — f(z —0)).

Another type of generalization of the class BY on everywhere convergence of Fourier
series, for every change of variable, was introduced by D. Waterman in [9].

Let A = {A,} be a nondecreasing sequence of positive numbers such that Z J"L
diverges and {{,} be a sequence of nonoverlapping segments [, = [a,.b,] C |a.b]. A
function f is said to be of A-bounded varation on [ = [a, b (f € ABV) if
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for every choice of {1, }. The supremum of these sums is called the A-vanation of fon [.
In the case A = {n}, one speaks of harmonic bounded variation (H BV).

The class H B contains all Wiener classes. M. Avdispahic has shown in [1] that H 8V
is the limiting case for validity of the identity (2.1).

G. Kvernadze in [3] generalized Theorem 2.1 for ABV classes:

Theorem 2.2. Let r € £, and suppose A BV is the closs of functions of A-bounded variotion
determined by the sequence A = (A)7- . Then
(a) the identity
- [(S(g:0))>r+l e
n]lrnl npir+l ~[2r + L) 9
is valid for every ¢ € ABV and each fived & € [—x, 7] if and only if ABV € HHBV.
(b) there is mo way to determine the jump at the point # £ |—m_ =] of an arbitrary
function g € ABV by means of the sequence ((S,(q; 8))"*")  n € N,

(B+) — gl&-)).

Here we also note the result from [3] for the conjugate Fourier series:

Theorem 2.3. Let r £ M and suppose ABV is the class of functions of A-bounded variation
determined by the sequence A = (A.)= . Then
(a) the identity
& e Y2 i)
i Cn(@ @)™ (1)
b 2 rx
is valid for every g € ABV and each fixed & € [—=, ] if and only if ABV C HEBV.
(b) there is no way to determine the jump at the point # € [—w, =] of an arbitrary
function g € ABV by means of the sequence (B (g @241 n e M.

(g(8+) — g(@—)).

3. MaIN RESULTS

Theorem 3.1. Let r £ H and suppose ABV is the dass of functions of A-bounded variotion
determined by the sequence A = (A, ), and a = —%-

8= —%- Then the identity

i [.':El:,l.':"Jl[_f..E"lllrb':' B [_”r:-—ll

it =k P Jizl. 2rw

is valid for every f € ABV and each = € (—1,1), where S5 (f. z) is the n-th partial sum
of the comjugate Fourier-Jacobi series, if and only if ABV C H BV

Proof. Differentiating an obvious wdentity, see [8]
SC3 Y (f12) = Su(9.6).
where r = cos 8, g(#) = f(cos#) one has

(1 — 22"} f(z+0) - f{z - D)),

il =13 13
(s

Y e 1
st f,r.:]} = S(9.8) ==
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Continuing the differentiation of the last identity with respect to = (r = cosf), we
obtain by induction the following representation (r £ M) :

[ ir'_JJ"[JF:rJ]'“"” —

2¥
(3.1) = (1- )Y (5.(g:0) >+ = % difx)(Sulg: )

i=1
for # £ [0. 7], where d;. i = 1.2,...,2r, are infinitely differentiable functions on {-1.1).
In addition,

EEE:I "S:'I lqll '”Iﬂ !f.'l—:-r.n] — m:.:liil.-l-l:l
fori=1,2,....2r,rc N, since g € W C L, see [3].
By Theorem 4.1 in [7] we have for o = 3 = —

3 =

lim [== (S-4/2-42)(f, 7))~ S22, 5] =0

]
a—a TR

thus taking that into account, dividing (3.1) by n®"*! and letting n — oo we get
b4 {2¢)
lim |"-'rd Lf. J‘]]

2 1

= mn aL—hoC ﬂ:

[(1-2) "4 (S, (g: )2+ Zdtr]f? (9:6)))

i=1

Using the well-known relation 5 (g.8)= _—155;. (g. ), we have
fi

b4 {2r) il
|E-:J [..lr J‘:I] = lim [ I.]- J..!':I—l—i'l:'q:' [ E':I:Il“]r'l ir Zd:{T.:II.SrJ[q:E]]“J]
=1

?I—|'_'l. ;Iiz' Lk
By Theorem 2.3 and (3.2) we have further
[-.,l I *'{j_r]]mrl

E—k ﬂir

Taking into acoount that fir+) = g(8F). & € [0, 7], we get

]Ir+JZl

L - | —r—-tl:_l'
== 2rm

(gl8+) — g(8—)).

llm |5‘i‘*-'*:'2|:f_r:|]':ir'l ) ‘]]_, Jrl:' l]l':- ]
Fa—asn n=r

Finally, using the equiconvergence formula

[f{z +0) — flz—0)].

".!;lrl;l..-ll{f_ 1.] s SIL_ 1%, =1,2) I.j' T-:|"1'_' :..i'l.||.-'..li .|| = r,l[]_]_
where o > —% and 3 = —%. proved in [7] (for an arbitrary function f € £ 5V and
afixed £ € (0, =5—=), v= 0,1,2. ... M, where it is assumed that Tg=—1, Zpraq =1
and Al s) = |2, + 1704 — £].) we prove the result. O
Fora=8= —% the corresponding Fourier-Jacobi series becomes Fourier-Chebyshev

series, so by ‘55 JJ”I:_,I" r) we denote the n-th partal sum of the Ecln_]ugan: Fourier-
Eh:h}'Eht‘-‘ SCTIeS nf f. Further, we prove that the sequence of the conjugate partial sums
of Fourter-Chebyshev series is Cesaro summable to 0.
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Theorem 3.2.

]im é[_l"li'_l"li:'[f.f:l+.-'§"é_|'"'='_l'"'!|ff_.r]+ +'§!" “i_“m[f.!] b
T —k [ .

forevery fe Ly(—1/2, -1/ and each —1 < = =< 1.
Proof. According to (1.3)

‘J_’"*"[f_ T) = Zj: . Jl-'“:]_:L'*"i" _RIEJ-’_'L*:'[WH':IH'IHH.
k=1

The sum
ll?;.-:i—I..."].—L_."I'II:-J.-.J_I] o s.é_lln'l—llfil |._iF- '.'I"':l-l- ) q:; IEI ' — 1 Elff.f]
can be written as

lf:a -1l +2(n—2as +...+(rn—1)1la,_,,

where a; = fiijw, , ’HRf Tl[me-..ﬁi']z-.mﬁi' First we will use the Stolz-Cesaro theorem,
S0

o lin=-1ja; +2n—-2)as+...+(m—-1)-1-a,_; ]

lim - = lim nas.

In order to prove the equiconvergence we use (1.2), the approximation [8, Theorem
8.21.8]

PBeosd) = nV2k{Bcos(N# + ) + O(n—F),
1 1 1

kig) = I_Ef.q:':ag‘.l R E[rmg‘.l-r 2
N = + ﬂ
2
1,

and [5, Lemma 2.3.]

1
lim n** J{ FORE™ ()i () = 0,
=1

ko

fora. 3 > -1, f € Lj{min(a, a/2—1/4), min{7, 5/2 — 1/4)), which is a direct generaliza-
tion of the Riemann-Lebesgue theorem. Finally we get

lim na, = Ii|:|_1 n_f{:g]-_.;i'*"*‘ (4. t1frwr:.'-.IEl:Il.J:nlﬁl
3y P12 (cos o
= [lim ﬂf{:aj..,,, —l]t.mﬁ"
a—A IR ll* *I 1]
r|.—]
= 0,

as Py o 122
O
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MAJORIZATION OF BEREZIN TRANSFORM

NAMITA DAS1 AND MADHUSMITA SAHOO

ABSTRACT

In this paper, we majorize the Berezin transform of positive invertible operators defined from the
Bergman space L2a(D) into itself. We also present sufficient conditions onbounded operators S, T []
L(L2a(D)) such that p(|S|) = p(T) in terms of the Schattennorm of these operators. Here p(T) is the
Berezin transform of T. Further, given T [1L(L2a(D)), we find conditions on the existence of a projection
operator E 0 L(L2a(D))such that p(TE) = 0.

1.INTRODUCTION

Let D = {z € C: |z| < 1} and let dA(z) = 1dzdy denote the normalized Lebesgue
area measure on D in the complex plane C. For 1 < p < o and f : D — C Lebesgue

1/p
measurable let || f||, = ( j | f|PdA(z)) . The Bergman space L? (D) is the Banach space
D

of analytic functions f : D — C such that || f||, < oco. The Bergman space LZ(D) is a
Hilbert space; it is a closed subspace [3] of the Hilbert space L?(ID,dA) with the inner

product given by (f, g) / f(2)g(2)dA(z), f.g € L*(D,dA). Let P denote the orthog-
onal projection of L*(D), dA) onto L?(DD). Let K(z,w) be the function on D x D defined
by K(z,w) = K.(w) = {1— The function K(z,w) is called the reproducing kernel
of L2(D). For any n > 0,n € Z, let e,(z) = /n+ 12", then {e,} forms an orthonor-
mal basis for L2(D). Let k,(z) = j’é}a&;) - (i:l_lazl)zg_ These functions k, are called the

normalized reproducing kernels of L2(D); it is clear that they are unit vectors in L2(D).
Let L°>°(DD,dA) be the Banach space of all essentially bounded measurable functions f on
D with || f||~ = esssup{|f(z)| : z € D} and H>(D) be the space of bounded analytic
functions on D. Let £(H ) be the space of all bounded linear operators from the separable
Hilbert space H into itself and £C(H) be the space of all compact operators in £(H ). An
operator A € L(H) is called positive if (Az,x) > 0 holds for every » € H in which case
we write A > 0. The absolute value of an operator A is the positive operator |A| defined

as |A| = (A*A)3. If H is infinite-dimensional, the map | - | on £(H) is not Lipschitz con-
tinuous. We define p : £(L2(D)) — L>=(D) by p(T)(z) = T(z2) = (Tk.,k.), z € D. A
function g(x, i) on D x [ is called of positive type (or positive definite), written g = 0, if

> citrg(x;, Tk) > 0

J.k=1
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for any n-tuple of complex numbers ¢;,....c, and points ...z, € D. Wewrite g = h
ifg—h =0 Weshallsay T € Aif T £ L*(D) and is such that

(1.1) T(z) = Oz, 2)

where Oz, ) is a function on I x [ meromorphic in r and conjugate meromorphic in y
and if there exists a constant ¢ > () such that

K(z,§) Oz, 7)K(z,5) = 0forall z,y € D.

It is a fact that (see [7], [B]) © as in (1.1), if it exists, is uniquely determined by T. In
this paper, we majorize the Berezin transform of positive invertible operators belonging
to £(L2(D)). The organization of this paper is as follows: In Section 2, we find con-
ditions on positive invertible operators A, B € £(L3(ID)) such that p(XB~'X) < p(A)
where X ¢ £(L2(I})) is self-adjoint. In Section 3, we establish that if f is an operator
monotone function on [0, ~c) and A € £{L3(D)) is positive then 8¢ gy gy (z. §)K (2. §) =
Oppae(r, K (z, ) forall z.y € D and p(f(EAE)) = p(Ef(A)E) if and only if E and
A commute f(0) = 0 and f is not a linear function. Section 4 is devoted to Schatten
norm and contractions. In this section, we obtain sufficient conditions on Schatten norm
of 8.T € L{LZ(}) such that p(|S|) = p(T) and p(8) < p(T). Further, we also find
conditions on the existence of projection operator E = £(L2(D)) such that p(TE) = 0.

2. ON INVERTIBLE POSITIVE OPERATORS

In this section, we find conditions on positive invertible operators A, B € L£(L3(D))
such that p(XB~'X) < p(A ] A) where X € £{L3(DD)) is self-adjoint. If § € £(L2(D)) and S
is positive, then let B<(x, i) %‘J—E—r for all x, y € I.

Theorem 2.1. Let A. B £ £(L2(D)) are positive and invertible and X € L£(L2(D)) is self-
adjoint. Then

(2.1) Balz, H)K (z.7) » Oxp-1x (. §)K(z, §)
if and only if
(2.2) (X Ky, Ko)|” < (AK;, K. )(BK,, K,)

for all x.y € I. In this case p(XB~1X) < p(A).
Proof Suppose (2.1) holds. Then

(AK, K,) > (XB™'XK,, K,)
for all z, y € . The last inequality is valid if and only if

Ll

Z ciG{AK,,, Ky} 2 E Gl XB XK, K.}

ij=1 ij=1
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where ry.x3.--- ,rn € Dand ;.5 = 1.2, - . n are constants. Thus (2.1) holds if and
anly if

(o) (Eon)) o (m) (Eo0))

Since Zc‘.fﬁ'ﬁ:r} ceD.j=1.--- .n } is dense in L2(D). hence (2.1) holds if and only

if {Ag.g) > {(XB-'Xg,g) for all g € L3(D). That is, if and only if 4 > XB~'X. Now
considering the congruence

(x 3)~(a 777 )(x 5)(-smx

[ A-XB'X 0
- 1]

B
X Y. = .
B ) is positive. Thus (2.1) holds if and

s =

we obtain 4 > XB'X IfEJ'.I.dCIIII_'p"If(

A
only if ( Y B } is positive. Suppose { B

from [2], that {(f: f;}(f; ) (h. }}i
(2 ) NG ) ()5

DA 5|m|:|].1.ﬁ|:.i|nun of d1u|:51: inner products yields

A

X

- ) > 0in £(L? & L?). Then it follows
2

(

XK., K < (AK., K. )(BK, K
for all =, y = . That is,
XKy KO < (AK., KBE,, K,
fura]].r'rjE . Th.ill:ls (2.2) holds. Suppose (2.2) holds for all .y & D. Let f =

Zc‘h ElJldt]'—Edhlwhl:l'l:r‘ are constants for j = 1,2, --- _n and d; are con-
a=1 L |

stants, r; € I, fori = 1.2, --. _m. Then using Heinz inequality [5] we obtain

(2.3) X f. e} < (X F X ]g. @)
for all f, g = L2(D). Now it follows from (2.3}, that

A X _ . _
{( X B ) ( :; )( ::-: )}={-4f-f3+{-1f.l?-f}+i-’l'f._q.:+{H_q-_q;-

= {Af. f} + {Bg.q) + 2Re(X f. g}

= 2{Af, f)'/*{Bg.g)'"* + 2Re(X [, g)
= 2|{X f. g} + 2Re{X . q)

= 2(Xf. o}l —2|(Xf.g}| =0
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for all f.g & L:(D). Hence ( : E ) is positive. From the first part it follows that

A> XBE-1X and
Bl )Rz, §) F Oxgxlz. ) Kz, §)

for all =, y € D. The result follows. O

Corollary 2.1. Let 0 < m < A < M and E is a projection operator from L2 (D)) onto a
closed subspace M. Let A~ |s4= A, and A |s4= Aa. Then

(2.4) O, (2. H)K(2, §) ® Oeag- (2. DK (2, §)
for all =,y € D. Further p{ EA1) = p{( EA2)7") if and only if E and A commute.

Proof The inequality in (2.4) follows from Theorem 2.1. Notice that £4; and
(I — EYA~! | \4. are invertible and

(EA2) ™' = EA; — EAYW(I — EYA™Y ) YT — E)A,.

Now let (EA;)~! = EA;. Then (I — E)A; = 0 and this implies EA~! = A~'E. Thus
EA=AE. m|

3. OPERATOR MONOTONE FUNCTION

In this section, we establish that if f is an operator monotone function on [0, oo} and
A€ £(L2(D)) is positive then

Opar(x. J)K(z, §) 2 Ogpaelz. §)K(x, §)

forall r,y ¢ D and p( f(EAE)) = p(Ef(A)E) if and only if E and A commute f(0) =0
and f i not a linear function.

Theorem 3.1. Let [ be an operator monotone function on [0, oc) and assume f{0) = 0.
Let A € C{L2(D)) and A > D and E is the projection operator from L2(I}) onto a closed
subspace M of L2(IV). Then

Oypa)(® ¥R (2. §) 3 Ogpaelr. 7) Kz ¥)

for all z.y £ D. Further, p(f(EAE)) = p{Ef(A)E) if and only if E and A commuite
Fl0) = D and fis not a inear function.

Proof Since f is operator monotone on [0, a¢), hence f can be represented as
) = f1 1
,l'lﬁ']=ﬂ+b.¢+ﬁ (?—m djalt)
where a = f{0).b > 0 and u is a positive Borel measure such that
A
Let E be the projection operator from L2 (D) onto the closed subspace A1 of L2 (I}). Then

{Ef[.-!]t'g.g:l={f.:t+h-.—1:|1:.'_:;r.£g::+f G;_uum-lgg_gg) dult)
Il
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and
(f(EAE)g. g} = {(a + bEAE) g, g) +f {(}: e E.-!..I':.":I'])g_ _.;-} dpal)
|}

= {{a + bEAE)g, g) +f {(%I:. — (E(tf + A) |_.“.}|']) Eq, .E_.:;r} dplt).
0

By Corollary 2.1,

1 1

<E — (E(tI + 4) |m) "' 2 E— E(tI + A)'E
for ¢ = 0 implies that f{ EAE) > Ef{A)E. Thus

Breasz. FIK(z. §) = Ocpaelz. 7Kz §)
for all .y & D. Now if, f(EAE) = Ef(A)E, then for every g £ L2(D), {ag.q) =
lafyg, Eq) and

{E(tI + A) |sm) " "Eh, Eh) = {(t] + A "Eh, Eh)
for almost every ¢t > [ with respect to u. Since L2(D) is separable, we obtain

(E(tf + A) |pq)" ' = E(tf + A)'E

for almost every ¢ > (). Thus by Corollary 2.1, E{if + A) = (¢ + A)E and hence £A = AE
and fi{0) =a = . O

4. SCHATTEN NORM AMD CONTRACTIONS

In this section, we obtain sufficient conditions on Scharten norm of 5, T € £(L2(D))
such that o |5|) = p(T) and p(S) < p(T'). Further, we also find conditions on the exis-
tence of £ £ L2(D) such that p(T'E) = 0. From [5], it follows that if T € £{H), then
Tz, g * = (T, 2){|T[* )y, y) for all z,y € H and for 0 < o < 1. An operator
T € L£C(H) is said to be in the Schatten p-dass S.(H) (1 < p < oo), if race(|T|F) < oo
Let S be the set of all bounded operators from L3 () into itself. The Schatten p-norm
of T is defined by |7, = (trace|T|*)*/*. It is well known that if T £ 5,(H) then,
TNl = 1Tz = |T|[| - The class S, (H) is also called the trace class of H.

1T = tace|T| = |T|ler = 3 (T i}l

where {#;} is an orthonormal basis for H. Let x and ¥ be two nonzero vectors in H.
SIIFP-DEE {z. ) =0.Let T —.rx?‘ y+yseT. Tl'ur:nJ' is self-adjoint on H. Further, ||J"2||

2% [lzlZy)? and ||T | = 2% "J" |||, where || - ||, is the Schatten p-class norm for p = 1.
Thus ||.|!'i||,, = ||IT ||= Nl:mc: that T2 = ||y||=.r-:?‘r+ \x||*w = u. so the square root |T'| of the
positive operator TE 15

s x -

I'l=||=x —

1= =l g @ g 2 Tl
Proposition 4.1. Let T" be @ rank k normal operator on & with {A}J_l the k eigenvalues of
T repeated according to multiplicity. Then

+ = IIII_.III

trace|T?| < (trace|T|)? < ktrace|T?).
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E
Proof Notice that |1 = Z |A;|. Since T2 is also of rank k and normal with the eigen-

-1
) E
values {Ju.f f_l. by functional caloulus, ||T2),, = E |AJ|=- S0 the first inequality is trivial.

=1
The second inequality follows from the EH.LLE".I'_I,T-SJI:].'I.W-EE inequality: O
Proposition 4.2. Let 5.7 ¢ C(L2(D)). If r(ESE) = tr(ETE) for every rank-one praojec-
tion E £ L{L2(D)), then p(8) = p(T).

Proof Forz e D let E =k, @k, wherek, € L(D) is the normalized reproducing kernel.
Then £ is a rank-one projection and every rank-one projection takes this form. By the
assumption, we have

{5k, . k.) = oSk, @ k)
=t ESE) =w{ETE)
=tr({Tk, @ k)= (Tk, k).
Thus forall z € Ié, {Sk,. k) = (Thk., k.) and p[5) = p(T). O

Lemma 4.1. Let 5,1 € S, for some p € [l,0). If0 < § < T and ||5], = |7 then
§=T.

Proof For proof see [6]. O
Let F1(H ) be the set of all rank-one projections on the Hilbert space H.

Theorem 4.1. Let § £ £(L3([3)) be a positive operator. The following hold:
(i) :.li.”-i (|8 +&E| — b) = or(SE) forall E € F(L3(D)), b= 0.
(i) If S € 8.1 < p < o, then bEnl[||£+bt' |p —b) = tr(SE) holds for all E €
Fu(L3(D)). b= 0.
Proof To prove (i), Suppose f ¢ (RangeE) i L3(D) with ||f|| = 1 and ¢ > 0. Assume
T = ({Sf, [} + €)E + bEL where EL = | — E. Then

F-U2ep-142 _ 1

1 ]
— ——— ESE ESE*
Bl te o AT @I fire 7

1

. 1 . 1
ELSE 4 cELSEY = ——0oFESE+ V)
NN I NIET t (SF.f1+¢ 5

where 1} is the sum of the last three terms. Notice that
ESEf =ES({f. /1) ={. HESf=ESf= (8],
Thus |ESEf|| = {Sf, f}. Hence

".].-— I._."ISrI-—]II'Z {5'f- .f:l

1= =7 e TV
Letting & —+ oo, we obtain

12 Q172 (55,0
P82 e <

since ||V — Das b — oo. Thus T-Y38T-12 < | and therefore

8 < ({8, f) + €)E +bE*.
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Hence we obtain the inequality ||(§ + bE| < ||[{Sf. f) + ¢ + B)E + bE*| which holds for
sufficiently large & > 0. Further, (Sf, f} +b < |5 + bE| and

I((SF. ) + €+ B)E + bE*|| = max{{SF. f} +¢€+b.b} = (Sf. f) +e+b

Thus for sufficiently large b > (), we obtain
D<= ||S+bE|—(SF.F) —b=(SF.fl+e+b—(Sf.f)-b=c
Hence we get,
blinll:":? + bhE|| —b) = (8], f} = w[SE).

To prove (ii), first notice that ||6E|| . = band
IH5+EP—IHH

1

From [1], it follows that the Schatten-norm || - ||, is Fréchet differentiable at any point of
SF[LEEJJ‘.I‘.I and computing the derivative at the point £ in the direction of 5, we obtain
I35 + Ellx — | EN,

b
B o i

-=(S5rr)

|5 +bE}lp — b=

Jlim (|S + BE]|, — b) = lim

where [ is the partial isometry in the polar decomposition of E. Clearly, I/ = E_ |EJ"~! =
E and ||E||, = 1 and hence we obtain that

Jim (S +bE]|, — b) = w(SE)
for E € Fy (L3 (D). 0O

Theorem 4.2. Suppose 8, T < £(L3(D)). The following hold:
(i) Suppose S is self-adjoint, T = 0 and £5 < T If further 5. T € 5, for some p with
1 < p < and ||S]], = [T, then p(|S]) = p(T).
(i) FS>0,T>0,5T¢e 8 forl <p=oo, then ||§+bE|p < ||T + bE||; holds for
all b > 0and E € F{LE(D)) if and only if § < T. In this case, p(5) < p{T).

Proof (i) Since § = 57, the space L3(I}) can be written as L2(D) = X, & X_ so that

1

5= ( i ) . where 5 and 5_ are positive operators on X and X _ respectively.

Let T = ( :t ji ) relative to the decompasition X = X & X_. Since T > 8 it
] K]
follows that
-8 % T + 8, T
= ] -
(4.1) ( T T, + 8 ) > 0 and ( T T,— 5 = 0.
Hence
(4.2) T, 28, andTy > S5_.

By [6], (4.2) and the min-max principle, we obtain
P n O
CONEIEY (G

! = (IT2l2 + ITHIE) " = (NS08 + NS_B2) /P = IS,
Fl
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Now suppose that |5 = |Ts. Then it follows from (4.2) and (4.3) that

(4.4) T3 llp = |50 and || T30, = [|5_ |-

From Lemma 4.1, it follows from (4.2) and (4.4) that T;, = 5, and T, = 5_. From (4.1),
it follows that 75 = 0 and 50 p(T) = p(]5]).

(i) Suppose 1 < p < o0 and assume 5 < T It follows from the monotonicity of Schatten-
p-norms [9] that || S + bE|, < |T + bE|| for all b > 0 and for all E £ F{L2(D)). Now
assume that

(4.5) |5 + BE|s = [T+ bE]|,

holds for all b > 0 and for all £ & F(L?(D)). From Theorem 4.1, it follows that
ﬁlim (|8 +bE)p —b) = w(SE). Thus we obtain from (4.5) that tr{SE) < o(TE) for
—p

all E € Fi(L3(D)). Thus it follows that

§f. N =wlS(faf)) 2uw(T(fe f))={TLf)

for all f € L2(D) and p{S) < p(T). For p = oo, § =< T implies ||§ + bE|| < ||T + bE|
for all b = 0 and for all E ¢ F(L3(D)). It follows from the monotonicity of the operator
norm. Now suppase ||S + bE|| < ||T" + bE| for all £ > 0 and for all E £ F1(L3(D)). From
Theorem 4.1, it follows that blim (15 + BE|| — b) = tr(SE). Thus tr{ S E) < tr{TE). Hence

(81, 1) = Jim (1 +b(f ® f)]| - b
= :.IL“:.[ T+ bl f = fill — b = (TF,F)
for all f ¢ L2(D). Therefore 5 < T and p(5) < p(T’). The theorem follows. 0O
Definition 4.1. An operator A £ £{L3(D)) is a contraction if ||A| < 1.

Theorem 4.3. Suppose T € £(L2(D)) is a contraction and |T* < |T?|. Then p(K"*!) <

plK™) for all n € M where K = |T?| - |T|*. Further { K™} converges strongly to a projection

operator E and p(K™) = p(E) and p{T'E) = (.

Proof Since |T? < |172|, hence K = 0. Further, since T € £(L2(D]) it follows from [4]

that |||T'|*/*)* = | T and |||Tf|| = JTf| for all f € L3(D). Let § = K'/? be the unique

[4] non-negative square root of i, Now because T is a contraction, we obtain
NT220° = | T2 < 1.

Thus

(K™ 5 = 18" 1)

={KS§"f.5f)

= [T 25 1 — ||| 715" F1?

< IS" I — ITS"FI < US™FII” = (K™ 1. f)-
Therefore (K*+1k,  k.) < (K*k_ k.,), for all = £ D. That is g{ K=+1) < p{K*") for all
n £ M and {K™} is a monotonically decreasing sequence of bounded positive operators.
Now since K = 0. it follows from [2] that {A™} converges strongly to a projection E.
Muoreover,

o e

SIS <3 (8™ — 1S™H A7) = AP — 1™+ 10F < e
m={l

Fa==ill
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for all non-negative integers m and f € LZ(DD). Therefore, |7S™f|| — 0 as n — oo,
and hence

TEf=T(lim K"f)= lim TS f =,
T = 3O L=k 00
for every f € L2(ID). Thus p(TE) = 0. O
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PROXIMAL PLANAR SHAPE SIGNATURES.
HOMOLOGY NERVES AND DESCRIPTIVE PROXIMITY

JAMES F. PETERS
Dedicated to J.H.C. Whitehead and Som Naimpally

ABSTRACT

This article introduces planar shape signatures derived from homology nerves,which are intersecting I-
cycles in a collection of homology groups endowed with a proximalrelator (set of nearness relations) that
includes a descriptive proximity. A 1-cycle is a closed,connected path with a zero boundary in a simplicial
complex covering a finite, boundedplanar shape. The signature of a shape shA (denoted by sig(shA)) is a
Seature vector thatdescribes shA. A signature sig(shA) is derived from the geometry, homology nerves,
Bettinumber, and descriptive CW topology on the shape shA. Several main results are given,namely, (a)
every finite, bounded planar shape has a signature derived from the homology group on the shape, (b) a
homology group equipped with a proximal relator defines a descriptive Leader uniform topology and (c)
a description of a homology nerve and unionof the descriptions of the I-cycles in the nerve have same

homotopy type.

1.INTRODUCTION

This paper introduces shape signatures restricted to the Euclidean plane. A finite, bounded planar shape
A (denoted by shA) is a finite region of the Euclidean planebounded by a simple closed curve and with a
nonempty interior [36].

After covering a shape with a simplicial complex,the signature of a shape is derived from the char
acteristics of the simple closed connected pathsderived from connections between vertices in
thecovering. A path in a simplicial complex is a se quence of connected simplexes. A closed path is

aconnected path in which one can start at any vertex v in the path and traverse the path to reach

FiGure 1. Path
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v. A simple closed path contains no self intersections (loops). A pair of adjacent simplexes
iy, o are connected, provided o, o5 have a common part [10, §IV.1, p. 169].

A path is oriented, provided the path can be traversed in either forward (positive) or
reverse (negative) direction. In other words, for any pair of adjacent edges in an oriented
path, we can choose one of the edges and the direction to take in traversing the edges
(cf, M. Berger and G. Gostiaux [8, §0.1.3] and J.W. Ulrich [42, §2, p. 364] on oriented
graphs).

Example 1. Sample Connected 1-simplexes in a Simple Closed Path

Let ¢y, eq, €5, ¢4, ¢5 be a sequence of oriented path containing 1-simplexes (edges) as shown
in Fig. 1. The ordering of the O-simplexes (vertices) is suggested by the directed edges. For
example, ey —+ ea =+ £q = &4 —+ £5 —+ ¢, defines a path. This path is closed, since e5 — ¢,
at the end of a traversal of the edges, starting at v1. This closed path is simple, since it has
no loops.

A triangulated shape A (also denoted by shA) is connected, provided there is an edge-
wise simple closed path between each pair of vertices in shid. Let K be a simplicial
complex covering shape sh.A. A 1-chain is a formal sum of edges leading from one vertex
to another vertex on K. A 1-cycle is a 1-chain with an empty boundary. Also let o; denote
the ith edge in a path in K, ';(K') be a set of cycles on edges on K and let Cy(K) be a
set of cycles on vertices on K. Let = be a simplex spanned by the vertices uy, ..., v, in K.
For p = 1, the homomorphic mapping &, : O (K) — Cy(K) is defined by

o= z{ 1) v, -- -, ] = Er:r,-

=l i=(

The alternating signs on the terms indicate the simplexes are oriented, which means that
for each positive term +v;, there is a corresponding —v;,0 < j < n. The signs are
inserted to take path orientation into account, so that all faces of a simplex are coherently
oriented [19, §2.1].

The maps , are called chain maps (or simplicial boundary maps). Each chain map
i, is a homomorphism. The sum of the connected, oriented paths is called a chain. For
a path with n edges in a triangulated planar shape, ¢ defines a 1-chain. The vertices
on a 1-simplex {edge) o; are the boundaries on #;. In other words, the boundary of n
vertices [iyg. .. ., t] is the (n — 1)-chain formed by the sum of the faces [19, §2.1]. For a
1-chain e = % Miei, Ai € Emod 2 (ie., for an integer coefficient A; in a 1-chain summand,
A; mod 2 = 0 or 1), the boundary of the 1-chain is the sum of the boundaries of its
1-simplexes, namely,

de= Moy + - 4 Ao, = 3 Moy,
i=1

Let K be a simplicial complex and let C3(K), € (K), Cy( K) be an additive Abelian
group of 2-chains, 1-chains and 0-chains, respectively. Consider a sequence of homomor-
phisms (boundary maps) of Abelian groups, namely,

iy oy 2 o b~ b
v e (g e 0y = gy = ).
Elements of imgd: are called boundaries. The quotient group H; = Z; /By = kerd, /imgdh
isolates those cycles in Z; with empty boundaries. Elements of H; are called 1-cycles, i.e.,
those cycles in &, that are not boundaries. From a quotient group perspective, elements
of H, are cosets of imgi: = Bi.
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Let 'y be a group of 1-chains of edges and let ) be a
group of O-chains of vertices. In general, p-chains un-
der addition form an Abelian group (denoted by [y, +)
or ’, = (,(K), when addition is understood). Each
member of 5 is a 0-chain (a linear combination of ver-
tices) on the boundary of a 1-chain in ;. The kernel
th : Cy(K) — Cy(K) is a group denoted by Z,. Ele-
ments of kerd, are called cycles. The image of & is the
group B, = B, (K’), which is a subgroup of Z,. FIGURE 2. l-cycle

Example 2. Sample Cycles.
For example, let edges e, €3, £3, 84, €5, €5, £7 and vertices vy, va, vy, vy, U5, vg ON 4 riangu-
lated shape (not shown) be represented in Fig. 2. Then, we have
B, : collection of boundaries written as 1-chains, e.g.,
e d(eg, eq,e7) = dH, = vy + vy — vg is the boundary of the hole H, in Fig. 2.
Z1: collection of cycles written as 1-chains. For simplicity, we consider only three
cycles in Z; based on the labelled edges in Fig. 2, namely,
lﬂl:!t'l:f'g-l:;;-!:_;-!'t'f,] = Uy oty ety bl =ty =ty =g =g o=ty =L
) {I']-!:2.!:7.!&'|_;:!:'.1:f'.',::l = tig iyt rgtry U = = =g =Ty =ty =i =g = L

e ey, eq,e7) = AH, = vy + vy — vg (appears in By).

Remark 1.1. With the quotient group H,, we factor out of Z, the chains that are the hole
boundaries in By. From the features of the 1-cycles in homology groups Hy, we define a
signature of a shape based on the description of 1-cycles, which is easily compared with the
signatures of other shapes.

Let (H;. 44 ) be a collection of 1-cycles on shape complexes equipped with a descriptive
proximity 4y [12, §4], [32, §1.8], based on the descriptive intersection : of nonempty

sets A and B [28, §3]. With respect to 1-cycle sets of connected, oriented edges ;.5
in Hi, for example, we consider ¢, Jez. For each given 1-cycle A (denoted by cycA),

find all 1-cycles cyeB in H,; that have nonempty descriptive intersection with cycA, ie.,
cycA A cycB # . This results in a Leader uniform topology on H; [23] and a main

result in this paper.

o,
Let A § B be a strong proximity between nonempty sets A and B, iLe., A and B have
nonempty intersection.

Theorem 1.1. Let (‘H.l- {? 6;}) be a collection of 1-dimensional homology groups H,
equipped with a proximal relator {? A } and which is a collection of 1-cycles on a simplicial
complex covering a finite, bounded planar shape and let

B(Hy) = {P(cycAd) : 1-cycle cyeA € H,} (Set of descriptions of cycd € )

be a set of descriptions ${cycA) of 1-cycles cyc A in Hi. A Leader uniform topology is derivable
from ®(H,y).
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This section briefly presents the basic approach to defining finite, bounded planar shape

barcodes based on two useful proximities (strong spatial proximity A A® and descriptive
proximity 6®). A shape barcode is a feature vector that describes a specific shape interms
of 1-cycle geometry, rank of H1, characteristics of a homology nerve on H1,
closurefiniteness and 1-cycle arc characteristics based on a descriptive weak topology on
H1. Byproximity of a pair of sets, we mean spatial closeness of the sets. For a complete
introduction to spatial proximity, see A. Di Concilio [13] and the earlier overview of
proximityby S.A. Naimpally and B.D. Warrack [26]. A proximal hit-and-miss topology is a
naturaloutcome of the traditional forms of proximity (see, e.g., G. Beer [5, §2.2, p. 45]). By
descriptive proximity of a pair of sets, we mean the closeness of the descriptions of the
sets.For a complete study of descriptive proximity, see A. Di Concilio, C. Guadagni, J.F.
Petersand S. Ramanna [12]. In Section 2.5, a descriptive CW topology (Closure finite
Weaktopology) is defined for a collection H1 of homology groups H1 equipped the
descriptiveproximity d®.

2.1. Basic Approach.

The basic approach in homology in classifying a finite, bounded planar shape shA covered
with a simplicial complex K is to analyze a collection H1 ofhomology groups H1 on shA,
which is a set of 1-cycles. A 1-cycle A in H1 (denotedby cycA) is a simple, closed,
connected path containing 1-simplexes (edges) that arenot boundaries of holes in shA. The
story starts by identifying 1-dimensional homologygroups Z1 (i.e., groups whose members
are cycles that are closed, connected paths on 1-simplexes) and 1-dimensional groups B1
containing cycles that are boundaries of holes.From Z1 and B1, we then derive a homology
group H1 = Z1/B1 (a quotient group whichfactors out the cycle boundaries in Z1) containing
1-cycles.Notice that every planar shape has a distinguished 1-cycle, namely, the contour of
ashape. The features (distinguishable characteristics) of 1-cycles in H1 provide a
barcodefor a particular shape shA, which is a feature vector in an n-dimensional Euclidean
spaceRn. A shape shA barcode describes shA and is an instance of the signature of the
shape(denoted by sig(shA)). In the study of a shape shA that persists and yet changes over
time,the rank of H1 is an important shape characteristic to include in the signature sig(shA).
Insimple terms, the rank of H1 is the number of 1-cycles in H1 [6, §2.2, p. 96] on complexK
on a shape shA. The rank of H1 (denoted by rH1) is also called the Betti numberof H1.
Viewing the rank of H1 in another way, the Betti number of H1 is the numberZ summands,
when H1 is written as the direct sum of its cyclic subgroups [19, §2.1, p.1390]. For
example, the rank of Z1 for Example 2 is 2.

2.2. Framework for Two Recent Proximities.

This section briefly presents a framework for two recent types of proximities, namely, strong
proximity and the more recent descriptive proximity in the study of computational proximity

[32].Let A be a nonempty set of vertices, p € A in a bounded region X of the
Euclideanplane. An open ball Br(p) with radius r is defined by

Br(p) ={q € X: llp — qll <r} (Open ball with center p, radius r).
The closure of A (denoted by clA) is defined by
clA={q € X : Br(q) c Afor some r} (Closure of set A).
The boundary of A (denoted by bdyA) is defined by
bdyA={q € X:B(q) c AN X\A} (Boundary of set A)
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Of great interest in the study of shapes is the intenior of a shape, found by subtracting the
boundary of a shape from its closure. In general, the interior of a nonempty set 4 C X
(denoted by intA) defined by

intA = cl4 — bdyA (Interior of set A).

Proximities are nearness relations. In other
words, a proximity between nonempty sets is
a mathematical expression that specifies the
closeness of the sets. A proximity space re-
sults from endowing a nonempty set with one
or more proximities. Typically a proximity
space is endowed with a common proximity
such as the proximities from Cech [41], Efre-
movi€ [15], Lodato [24], and Wallman [44], or
the more recent descriptive proximity [29]).

2.3. Strong Proadmity. Nonempty sets A, B in s T4
a space X equipped with the strong proximity
Eo
.:. are strongly near [strongly contacted] FIGURE 3. cycA § ocH

(denoted A J I_ﬂ- provided the sets have at least one point in common.L The strong

contact relation .E was introduced in [31] and axiomatized in [38], [18, §6 Appendix]
(see, also, [32, §1.5], [31, 37]) and elaborated in [32].

Let A B, C C X and r ¢ X. The relation E on the family of subsets 2% is a strong

proximity, provided it satisfies the following axioms.

(s0NO): @ § AVAC X,and X § AVAC X,

(snN1): A 5 BB § A

(snNZ): A § B implies A 1 B £ 0.

(snN3): If {H;};.; is an arbitrary family of subsets of X and A ng B,. for some

* £ I such that int(B,.) # 0, then A§(J,_, B,)

(s0N4): intA M intB £@ = A § B.

When we write A E' £, we read A is strongly near 85 (A strongly contacts ). The notation

A ,.IEI £ reads A is not strongly near & (A does not strongly contact B). For each strong
proximity (strong contact), we assume the following relations:

(snN5): r £ int(4d) = r ? A
(snNG): {r} § lu} 2=y

For strong proximity of the nonempty intersection of interiors, we have that A E B &
int4 Mintf # § or either 4 or B is equal to X, provided A and B are not singlerons; if
A = {r}, then x £ int{H), and if B too is a singleton, then * = y. It tuns out thar if
A C X is an open set, then each point that belongs to A is strongly near A. The bottom
line is that strongly near sets a