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BANDER AL-ZAHRANI1, JAVID GANI DAR AND MASHIAL M. AL-SOBHI

MOMENTS OF ORDER STATISTICS OF THE POISSON-
LOMAX

A B S T R A C T

1. INTRODUCTION

Order statistics arise naturally in many life applications. The use of recurrence relations for the moments 

of order statistics is quite well known in statistical literature (see for example Arnold et al. [2], Malik et al. 

[6]). For improved form of these results, Samueland Thomes [7] have reviewed many recurrence 

relations and identities for the momentsof order statistics arising from several speci c continuous 

distributions such as normal,Cauchy, logistic, gamma and exponential. Balakrishnan et. al [11] and 

Balakrishnanet. al [8] studied recurrence relations and identities for moments of order statistics forspecic 

continuous distributions. Recurrence relations for the expected values of certainfunctions of two order 

statistics have been considered by Ali and Khan [1] and Khan et.al [5]. The moments of order statistics 

have some important applications in inferentialmethods. For an elaborate treatment on the theory, 

methods and applications of orderstatistics, interested readers may refer to Balakrishnan and Rao [9] and 

[10].The Poisson-Lomax (PL) distribution, proposed recently by Al- Zahrani and Sagor [3],is a useful 

model for modeling lifetime data. The distribution is a compound distributionof the zero-truncated 

Poisson and the Lomax distributions. See also, Al-Awadhi andGhitany [12] for a discrete extension of 

this model.
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The Poisson-Lomax distribution has been proposed as a useful reliabilitymodel for analyzing lifetime 

data. For this distribution, some recurrence relations areestablished for the single moments and product 

moments of order statistics. Usingthese recurrence relations, the means, variances and covariances of all 

order statisticscan be computed for all sample sizes in a simple and ecient recursive manner.
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5. Conclusion

In this paper we studied the Poisson-Lomax distribution from the order statistics viewpoint. Also we 

considered the single and product moment of order statistics fromthis distribution. We established some 

recurrence relations for both single and productmoments of order statistics. Using these recurrence 

relations, one can easily compute the means, variances and covariances of all order statistics for all 

sample sizes in a simple andecient recursive manner.

References

[1] A. A. Ali, A. H. Khan: Recurrence relations for the expected values of the certain function of two order 

statistics, Metron, LVI(1998), 107119.

[2] B. C. Arnold, N. Blakrishan, N. H. Nagraja: A rst course in order Statistics, John Wileyand Sons, 

New York, 1992.

[3] B. Al-Zahrani, H. Sagor: The Poisson-Lomax distribution, Colomb. J. of Stat., 37 (2014),223243.

[4] H. A. David, H. N. Nagaraja: Order Statistics, 3rd Edition, Hoboken, NJ: Wiley, 2003.

[5] A. H. Khan., M. Yaqub, S. Parvez: Recurence relations between moments of order statistics,Naval. 

Res. Logist. Quart., 30 (1983), 419441.

[6] Mailk H. J., N. Balakrishnan, S. E. Ahmad: Recurence relations and identities for moments of order 

statistics: Arbitrary continuous distributions, Commun. Statist.Theo. Meth., 17 (1998),26232655.

[7] P. Samuel, P. Y. Thomas: An improved form of a recurrence relation on the product moment of order 

statistics, Commun. Statist.Theo. Meth., 29( 2000), 15591564.

[8] N. Balakrishnan, H. J. Malik, S. E. Ahmed: Recurrence relations and identities for moments  of order 

statistics-II Specic continuous distributions, Commun. Statist.Theo. Meth., 17 (1988), 26572694.

[9] N. Balakrishnan, C. R. Rao: Handbook of Statistics 16 - Order Statistics: Theory and Methods,  

North-Holland, Amsterdam, The Netherlands, 1998.

[10] N. Balakrishnan, C. R. Rao: Handbook of Statistics 17 - Order Statistics: Applications, North-

Holland, Amsterdam, The Netherlands, 1998.

[11] N. Balakrishnan, Z. Xiaojun, B. Al-Zahrani: Recursive computation of the single and product 

moments of order statistics from the complementary exponential-geometric distribution, to appear in: J. 

Stat. Comput. Sim., DOI:10.1080/00949655.2014.925112, 2014.

[12] S. A. Al-Awadhi, M. E. Ghitany: Statistical properties of Poisson-Lomax distribution and its 

application to repeated accidents data, J. Appl. Statist. Sci., 10 (2001), 365372.

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025)                                                                                  Page No. 7

ISSN.1857-8365



SHIGEYOSHI OWA, YUKI NAKAMURA, SHUNYA AZUMA, YUMA SHIBA 
AND YUSUKE TOKURA

REMARK ON TRIGONOMETRIC FUNCTIONS

A B S T R A C T

1. INTRODUCTION

Noting the derivatives for functions sinz and cosz, we assume the fractionalderivatives for sinz and cosz. 

Applying the fractional derivatives, we consider generalizedexpansions for functions sinz and cosz. 

Further, the generalized expansion for f(z) = eizis also discussed.
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SAMRA SADIKOVIC´

ON THE DETERMINATION OF JUMP BY THE 
DIFFERENTIATED CONJUGATEFOURIER-JACOBI 

SERIES

A B S T R A C T

1. INTRODUCTION

In the present paper we prove a new result on determination of jump discontinuities by the differentiated 

conjugate Fourier-Jacobi series. Further, we establish Cesàrosummability of the sequence of partial 

sums of the conjugate Fourier-Chebyshev series, aspecial type of Fourier-Jacobi series which are 

obtained for
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MAJORIZATION OF BEREZIN TRANSFORM

NAMITA DAS1 AND MADHUSMITA SAHOO

A B S T R A C T

 In this paper, we majorize the Berezin transform of positive invertible operators defined from the 

Bergman space L2a(D) into itself. We also present sufficient conditions onbounded operators S, T � 

L(L2a(D)) such that ρ(|S|) = ρ(T) in terms of the Schattennorm of these operators. Here ρ(T) is the 

Berezin transform of T. Further, given T �L(L2a(D)), we find conditions on the existence of a projection 

operator E � L(L2a(D))such that ρ(T E) = 0.

1. INTRODUCTION
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PROXIMAL PLANAR SHAPE SIGNATURES.
HOMOLOGY NERVES AND DESCRIPTIVE PROXIMITY

JAMES F. PETERS
Dedicated to J.H.C. Whitehead and Som Naimpally

A B S T R A C T

 This article introduces planar shape signatures derived from homology nerves,which are intersecting 1-

cycles in a collection of homology groups endowed with a proximalrelator (set of nearness relations) that 

includes a descriptive proximity. A 1-cycle is a closed,connected path with a zero boundary in a simplicial 

complex covering a finite, boundedplanar shape. The signature of a shape shA (denoted by sig(shA)) is a 

feature vector thatdescribes shA. A signature sig(shA) is derived from the geometry, homology nerves, 

Bettinumber, and descriptive CW topology on the shape shA. Several main results are given,namely, (a) 

every finite, bounded planar shape has a signature derived from the homology group on the shape, (b) a 

homology group equipped with a proximal relator defines a descriptive Leader uniform topology and (c) 

a description of a homology nerve and unionof the descriptions of the 1-cycles in the nerve have same 

homotopy type.

1. INTRODUCTION

This paper introduces shape signatures restricted to the Euclidean plane. A finite, bounded planar shape 

A (denoted by shA) is a finite region of the Euclidean planebounded by a simple closed curve and with a 

nonempty interior [36].

After covering a shape with a simplicial complex,the signature of a shape is derived from the char

acteristics of the simple closed connected pathsderived from connections between vertices in 

thecovering. A path in a simplicial complex is a se quence of connected simplexes. A closed path is 

aconnected path in which one can start at any vertex v in the path and traverse the path to reach

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025)                                                                                  Page No. 29

ISSN.1857-8365



Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025)                                                                                  Page No. 30

ISSN.1857-8365



Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025)                                                                                  Page No. 31

ISSN.1857-8365



This section briefly presents the basic approach to defining finite, bounded planar shape 

barcodes based on two useful proximities (strong spatial proximity ∧∧δ and descriptive 
proximity δΦ). A shape barcode is a feature vector that describes a specific shape interms 
of 1-cycle geometry, rank of H1, characteristics of a homology nerve on H1, 
closurefiniteness and 1-cycle arc characteristics based on a descriptive weak topology on 
H1. Byproximity of a pair of sets, we mean spatial closeness of the sets. For a complete 
introduction to spatial proximity, see A. Di Concilio [13] and the earlier overview of 
proximityby S.A. Naimpally and B.D. Warrack [26]. A proximal hit-and-miss topology is a 
naturaloutcome of the traditional forms of proximity (see, e.g., G. Beer [5, §2.2, p. 45]). By 
descriptive proximity of a pair of sets, we mean the closeness of the descriptions of the 
sets.For a complete study of descriptive proximity, see A. Di Concilio, C. Guadagni, J.F. 
Petersand S. Ramanna [12]. In Section 2.5, a descriptive CW topology (Closure finite 
Weaktopology) is defined for a collection H1 of homology groups H1 equipped the 
descriptiveproximity δΦ.

2.1. Basic Approach.

 The basic approach in homology in classifying a finite, bounded planar shape shA covered 
with a simplicial complex K is to analyze a collection H1 ofhomology groups H1 on shA, 
which is a set of 1-cycles. A 1-cycle A in H1 (denotedby cycA) is a simple, closed, 
connected path containing 1-simplexes (edges) that arenot boundaries of holes in shA. The 
story starts by identifying 1-dimensional homologygroups Z1 (i.e., groups whose members 
are cycles that are closed, connected paths on 1-simplexes) and 1-dimensional groups B1 
containing cycles that are boundaries of holes.From Z1 and B1, we then derive a homology 
group H1 = Z1/B1 (a quotient group whichfactors out the cycle boundaries in Z1) containing 
1-cycles.Notice that every planar shape has a distinguished 1-cycle, namely, the contour of 
ashape. The features (distinguishable characteristics) of 1-cycles in H1 provide a 
barcodefor a particular shape shA, which is a feature vector in an n-dimensional Euclidean 
spaceRn. A shape shA barcode describes shA and is an instance of the signature of the 
shape(denoted by sig(shA)). In the study of a shape shA that persists and yet changes over 
time,the rank of H1 is an important shape characteristic to include in the signature sig(shA). 
Insimple terms, the rank of H1 is the number of 1-cycles in H1 [6, §2.2, p. 96] on complexK 
on a shape shA. The rank of H1 (denoted by rH1) is also called the Betti numberof H1. 
Viewing the rank of H1 in another way, the Betti number of H1 is the numberZ summands, 
when H1 is written as the direct sum of its cyclic subgroups [19, §2.1, p.1390]. For 
example, the rank of Z1 for Example 2 is 2.

2.2. Framework for Two Recent Proximities. 

This section briefly presents a framework for two recent types of proximities, namely, strong 
proximity and the more recent descriptive proximity in the study of computational proximity 

[32].Let A be a nonempty set of vertices, p ∈ A in a bounded region X of the 
Euclideanplane. An open ball Br(p) with radius r is defined by

Br(p) = {q ∈ X : ∥p − q∥ < r} (Open ball with center p, radius r).
The closure of A (denoted by clA) is defined by

clA = {q ∈ X : Br(q) ⊂ A for some r} (Closure of set A).
The boundary of A (denoted by bdyA) is defined by

bdyA = {q ∈ X : B(q) ⊂ A ∩ X \ A} (Boundary of set A)
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Conjecture 2.3. Every finite, bounded, planar shape with a decomposition and with at least one hole 

contains a descriptive homology nerve that intersects with the boundary of a hole.

Conjecture 2.4. Every finite, bounded, planar shape with a decomposition and with at leastone hole 

contains a descriptive homology nerve that does not intersect with the boundary ofany hole.Consider 

next a basis for a shape signature.

Definition 2.3. Shape Signature.Let H1 be a collection of homology groups on a simplicial complex 

covering a shape shA, a finite bounded planar region with nonempty interior and let Nrv1H1,Nrv2H1 ∈ 

2 H1. Assumethat H1 is equipped with a proximal relator {∧∧δ , δΦ}. A signature of shape shA (denoted 

bysig(shA)) is a feature vector that includes at least one of the following components.

1o Geometry: One or more features of the curvature of each 1-cycle cycA ∈ H1 are included in sig(shA) 

that describes shape shA.

2 o Homology: rank of the homology group H1 (denoted by rH1), i.e., number of 1- cycle generators of 

H1 is defined in terms of the rank of the cycles group Z1 (denotedby rZ1) and the rank of the boundaries 

group B1 (denoted by rB1) . Recall thatrH1 = r(Z1/B1) = rZ1 − rB1 (Rank of a homology group) [43, p. 

63].The rank rH1 (a Betti number) can change over time and provides a useful inindicator of planar 

shape persistence. Hence, its inclusion in a shape shA signaturesig(shA) (barcode) is important in 

considering the persistent topology of data suchas that found in R. Ghrist [16].

3o Homology Nerve: Since every cycA ∈ H1 is the nucleus of a descriptive homology nerve NrvΦH1 

(from Theorem 2.5), select a component of Φ(cycA) (call it x)with a description that matches the 

description of the same component in the othermembers of NrvΦH1. Include Φ(x) in the signature of 

shA, i.e.,sig(shA) = (. . . , Φ(x). . .) (Φ(x) in feature vector that describes shA).

4o Closure Finiteness: Let vvc′ be an arc in a 1-cycle cycA ∈ H1 and cl(vvc′) intersects only a finite 

number of other arcs in H1. cl(vvc′) is the closure of an arcin cycA ∩ΦcycB for a finite number of 1-

cycles. For cycA,cycB ∈ H1, chooseΦ(cl(vvc′)) ∈ sig(shA) or Φ(cycA) ∈ sig(shA) for a selected 

number of 1-cycles inH1.

5o descriptive CW: (i.e., descriptive Weak Topology) Assume that Closure Finite ness holds for the 

collection of homology groups H1 equipped with the descriptiveproximity δΦ. Let vvc′ be an arc in H1 ∈ 

H1 and let 1-cycle cycA ∈ H1. Then cycA closed in H1, provided cycA ∩ vvc′ ̸= � is also closed in H1 . 

Then cycA∧∧δ vvc′.Hence, from Lemma 2.3, cycA δΦ vvc′. For example, 1-cycles cycA,cycB in Fig. 

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 2, May- Aug 2025)                                                                                  Page No. 39

ISSN.1857-8365



4 overlap, since arc vd3v6 is common to both 1-cycles. Such arcs provide an incisive feature for a shape 

signature. Then, for a shape shA, include the description of sucharcs in the shape signature sig(shA).

Remark 2.2. The original idea of a CW topology (Closure finite Weak topology) was toshift from 

structures in simplicial complexes K that are the focus in P. Alexandroff [2] andin P. Alexandroff, H. 

Hopf [4] to homological structures called cells and cell complexes (e.g.,0-cells (vertices) and 1-cells 

(open arcs) attached to a shape skeleton via maps to obtain a cell complex) in a homology on K [45, p. 

214]. A cell complex is a finite collection of cells [19]. With a descriptive CW, we shift from a description 

of structures (e.g., simplicialnerves [34, p. 2] and nerve spokes [34, §2.2, p. 4] [1, Def. 9, p. 8]) in 

simplicial complexesto a description of structures such as homology nerves, collections of 1-cycles and 

overlap ping arcs in a collection of homology groups H1 in cell complexes on finite bounded 

planarshapes. Basically, with a descriptive CW on H1, we include those features of arcs, 1-cycles 

andhomology nerves in H1 that provide a complete signature sig(shA) for a shape shA. The motivation 

for doing this is an interest in measuring the persistence of the feature values of arcs,1-cycles and 

homology nerves in homology groups over time. This descriptive CW is based onthe Closure finiteness 

and Weak topology axioms for a traditional CW complex given by K.Jänich [21, §VII.3, p. 95] founded 

on its original introduction by J.H.C. Whitehead [45]. 

3. MAIN RESULT

Theorem 3.1. Every finite, bounded planar shape shA covered by a simplicial complex has a signature 

derived from the homology group on the complex.Proof. From Def. 2.3, it is enough to include the rank 

of H1 in sig(shA) for a shape shAto have a signature.

Lemma 3.1. Let H1 be a collection of homology groups equipped with the proximal relator

RΦ ={∧∧δ , δΦ}on a simplicial complex covering a finite, bounded shape. Every collection of1-

dimensional homology groups H1 ∈ H1 endowed with the proximal relator RΦ defines adescriptive 

uniform Leader topology on H1.

Proof. The basic approach in this proof is to use the steps for constructing a uniform topology introduced 

by S. Leader [23] in constructing a descriptive uniform topology.∩Φ: For each Nrv1H1 ∈ H1, select all 

Nrv2H1 ∈ H1 such that Nrv1H1∧∧δ Nrv2H1, i.e., thepair of homology nerves Nrv1H1 ∈ H1 overlap 

(have strong proximity). From Lemma 2.3,Nrv1H1 ∩ΦNrv2H1 ̸= �. Hence, Nrv1H1 ∩ΦNrv2H1 ∈ 

Φ(H1).∪Φ: By definition,

Nrv1H1 ∪ΦNrv2H1 = {cycA ∈ H1 : cycA ∈ Nrv1H1

 ∩ΦNrv2H1or Φ(cycA) ∈ Φ(Nrv1H1) or Φ(cycA) ∈ Φ(Nrv2H1)}
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Hence, Nrv1H1 ∪ Φ Nrv2H1 ∈ Φ(H1). 

Remark 3.1. Lemma 3.1 is a stronger result than we need to derive a descriptive CW, which is a 

convenient setting for the study of finite, bounded planar shapes signatures. Theorem 1.1is a direct result 

of Lemma 3.1.

Theorem 3.2. [14, §III.2, p. 59] Let F be a finite collection of closed, convex sets in Euclidean space. 

Then the nerve of F and the union of the sets in F have the same homotopytype.

Lemma 3.2. Let H1 be a collection of homology groups on a simplicial complex covering afinite, 

bounded shape. Then a homology nerve NrvH1 ∈ 2H1 and ∪cycA∈H1cycA have samehomotopy type

Proof. H1 is a collection of 1-cycles, which are closed, convex sets in Euclidean space. Then from 

Theorem 3.2, NrvH1 and ∪cycA∈H1cycA have same homotopy type. 

Theorem 3.3. Let ( H1,{∧∧δ , δΦ}) be a collection of homology groups H1 equipped with aproximal 

relator on a simplicial complex covering a finite, bounded shape. Then Φ(NrvH1)) ∈2Rn(a description 

of a homology nerve) and ∪Φ(cycA)∈Φ(NrvH1)Φ(cycA) (union of the descrip tions) have same 

homotopy type.

Proof. Each member of Φ(H1) is feature vector in Rn and each point in Rn is a closed,convex singleton 

set. Then from Lemma 3.2, Φ(NrvH1) and ∪Φ(cycA)∈Φ(NrvH1)Φ(cycA)have same homotopy type.

Remark 3.2. Open Problems.Let shA be a finite, bounded planar shape covered with a simplicial 

complex K and let H1(K)be a homology group on K.

An open problem in shape theory is selecting each 1-cycle that is the contour of a subshapecontaining a 

hole in shA.

A second open problem in shape theory is the construction of a collection of homologynerves that 

overlap a subshape of interest in a shape shA.Let H1(K) be a collection of homology groups on a 

simplicial complex K. 

A third openproblem in shape theory is detecting space curves (also called twisted curves by D. 

Hilbertand S. Cohn-Vossen [20, §27]) overlapping with 1-cycles in H1(K).

A fourth open problem in shape theory is to use homology nerves as a basis for measuringthe persistence 

over time of object shapes in digital images.

A fifth open problem in shape theory is to measure the persistence of a finite, boundedshape over time 

using a shape signature that includes the uniform iso-curvature of the 1-cycles and the Betti number of a 

homology group on the shape
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