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Aspects of Algebraic Structure of Rough Sets

S. Sangeetha, Shakeela Sathish
Department of Mathematics, SRM Institute of Science and Technology, Ramapuram
Campus, India

ABSTRACT

Rough sets are extensions of classical sets characterized by vagueness and imprecision. The main idea of
rough set theory is to use incomplete information to approximate the concept of imprecision or
uncertainty, or to treat ambiguous phenomena and problems based on observation and measurement. In
Pawlak rough set model, equivalence relations are a key concept, and equivalence classes are the
foundations for lower and upper approximations.

Developing an algebraic structure for rough sets will allow us to study set theoretic properties in detail.
Several researchers studied rough sets from an algebraic perspective and a number of structures have
been developed in recent years, including rough semigroups, rough groups, rough rings, rough modules,
and rough vector spaces. The purpose of this study is to demonstrate the usefulness of rough set theory in
group theory. There have been several papers investigating the roughness in algebraic structures by
substituting an algebraic structure for the universe set. In this paper, rough groups are defined using upper
and lower approximations of rough sets from a finite universe instead of considering the whole universe.
Here we have considered a finite universe A along with a relation ¥ which classifies the universe into
equivalence classes. We have identified all rough sets with respect to this relation. The upper and lower
approximated sets have been taken separately and these form a rough group equivalence relation (e )
and it partitions the group (2",A) into equivalence classes. In this paper, the rough group approximation
space (2",xrog ) has been defined along with upper and lower approximations and properties of subsets of
2" with respect to rough group equivalence relations have been illustrated.

\Keywords Rough Group, Rough Group Approximation Space, Rough Group Equivalence Relation

1 Introduction

There are numerous mathematical concepts that are delivered through the use of set theory, which is
used as a core method in the entire field of mathematics. Pawlak introduced the concept of rough sets [1].
There has been an increase in interest in this newly emerging theory in recent years. Since its
introduction, the rough set theory has been continued to develop as a tool for classifying.

The rough set has been evaluated algebraically by a variety of experts to date. The topics of interest range
from pure theory, such as topological and algebraic foundations, to applications as discussed in [2], [3],
& [4]. The concept of rough sets has been approached algebraically by Bonikowski [5], Iwinski [6] &
Pomykala [7]. A rough subring is defined by Davvaz [8] when rough set theory and ring theory are
considered. The rough group has been evaluated by N. Kuroki and Wang [9] in order to approximate the
upper and lower bounds of any subset of a group in terms of its normal subgroup. In addition, topological

rough groups were defined and their properties were examined in [10]. A generalized rough set can be
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viewed in two different ways according to Radwan et al [11]. Based on a family of dominance
relationships, Salama et al [ 12] gave properties of different types of rough approximations. A topological
approach was given by Al-Shami [13] to generate new rough set models. Also using E-neighborhoods,
Al-Shami[ 14] provided new rough approximations. A topological approach to rough approximations
based on closure operators was developed by El-Bably et al [15]. Through ideals, Guler et al [16]
provided rough approximations based on different topologies. The concept of generalized rough
approximation spaces based on maximal neighbourhoods and ideals is discussed by Hosny et al [17].
Several types of rough sets based on coverings were provided by Nawar et al [18]. Based on j-
neighborhood space and j-adhesion neighborhood space, Atef et al [19] compared six types of rough
approximations. Using J-Nearly Concepts via Ideals Hosny [20] gave a topological approach for rough
sets. Pradeep Shende et al [21] presented a novel concept of uncertainty optimization through multi-
granular rough sets. A rough set with uncertainty optimization based on incomplete information
systems was introduced by Arvind etal [22].

In particular, Biswas [23] introduced rough groups and rough subgroups. Miao et al [24] modified the
approach by proving the group axioms to the upper approximation of a set. Wang [25] examined the
relationship between the normal series of a group and its rough approximations in order to determine the
properties of rough groups.

In this paper, modified approach to rough groups is provided followed by a rough group approximation
space based on rough group equivalences.

The rough set theory has been briefly reviewed in section 2. In section 3, we explored rough groups
from a different perspective. Wehave introduced the rough group approximation space in section 4 and
given the upper and lower approximations of any set based on rough group equivalence relations. The

significance of this work is presented in results and discussion section 5.

2 Basics of Rough Set Theory

Definition 2.1 [1]

Approximation space is composed of a finite set univl (= ¢) and 11, an equivalence relation on univl
and itisrepresented by (univl,”11”).

Definition 2.2 [1]

Afamily of subsets E= {E1,E2,E3......En} ofuniv1 are said to be a classification ofuniv1 if
*EIVE2U....UEn=univl

* Ei NEj =¢,fori=]

Definition 2.3 [1]

Let (univl,”1”) be an approximation space and for any k € univl the set [k]”11” is called the
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equivalence class induced by 11”.

Definition 2.4 [1]

Consider K = (univ1,”11”), an approximation space and Abe any subset of univ1 then
eunivl A= {ai|[ai]"11"NA=¢}

cunivlA={ai|[ai]11” C A}

* BNA=univl A—univl A

are called approximations of upper, lower & boundary regions of A in relation to x respectively and if
the boundary of the set A is not empty, it is said to be rough, otherwise it is said to be crisp.
IfA,B C univl, then the following results are due to [1]

*univlA C A CunivlA

eunivlunivl =univlunivl =univl

*univlAUB =univl A UunivlB

*univlAUB 2 univl A vunivl B

*univlAUB =univl A UunivlB

*univlANB € univl A NuivIBn

* [fA CBthenunivl A C univlB &univl A CuniviB

3 Rough Groups
Definition 3.1 : Group|[26]

Groups are non-empty sets with binary operations that satisfy closure, associativity, identity, and

inverse properties under .

Definition 3.2 : Power Set[26]
Collection of all possible subsets of G forms a Power set represented by 2G which forms an abelian

group along with operation A

Definition 3.3 [1]

(U,R1), an approximation space. R1, an equivalence relation partitions U into classes of equivalence.
LetW(=¢) € U.RIW={w | [w]R]1 N"W=¢} ,whichisupper approximation of W R1W ={w| [w]R1 € W}
which is lower approximation of W if RW —RW=¢ then W = (RW,RW) is a rough set otherwise crisp

Definition 3.4

(U,R), an approximation space which consists of a finite set U of n elements. (2,A) forms an abelian
group and R(U), a collection of all rough sets in U is said to be a rough group if R(U)AR(U) with respect
to the binary operation A forms subgroup of (2°,A)
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Theorem 3.1

Let R(U) represents all possible rough sets in a space (U,R). R(U)UR(U) with respect to the binary
operation A forms subgroup of (2°,A) and hence R(U) is said to be rough group.

Proof1

Let R(U) be the set of all rough sets of (U,R).

R(U)=RU={

W|W eR(U)}

R(U)=RU={W

W €R(U)}

Letus denote R(rog)=RU €RU

To prove R(rog), subgroup of 2U.

R(rog) is non empty since ¢ is always a subset of any set and it will be in RU
LetW1,W2 € R(rog)

Claim: WIAW2=(W1 UW2)-(WINW2)eR(rog)
“W1,W2 eR(rog)

W1,W2 e RUURU

W1,W2€eRUorW1,W2€eRU

Casel

IfW1,W2€eRU
W1=B1&W2=B2whereB1,B2€R(U)
WI1AW2=(B1uB2)—(B1NB2)
B1uB2={[u]R|[u]RNB1UB2=¢}
={[u]R|[u]RNB1U[u]RNB2=¢}==B1UB2€R(V)
B1NB2={[u]R|[[u]RNB1NB2=6}
={[u]R|[u]RNB1IN[u]RNB2=¢} ==B1NB2€R(V)
AssumingW2CW1
(B1uB2)—(B1NB2)={[u]RNB1=¢ or [u]RNB2=
¢} —{[u]RNB1=¢ and [x]RNB2=¢}

={[u]RNB1=¢ or [u]RNB2=¢}=B1uB2€R(U)
==>WIAW2eRU

Case2

IfW1,W2€eRU
W1=B1&W2=B2whereB1,B2€R(U)
WI1AW2=(B1UB2)-(B1NB2)
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B1uB22(B1uB2)eR(U)

B1NB2=(B1NB2)

AssumeB2CBI

(BINB2)eR(U)
B1uB2={[u]R|[u]REB1UB2==[u]RNB1UB2=[u]R}
B1NB2={[u]R|[u]REBINB2==[u]RNB1NBI1=[u]R}
(B1uB2)—(B1NB2)=[u]RNB1UB2€R(U)
WIAW2eRU

Henceif W1,W2€RUURU,thenW1AW2€RUURU.
Also all elements poss self inverse .Hence RU U RU isa sub group of 2U and hence R(U) is said to be
Rough group.

R(U)={{1},{2},{1,3},{2,3}}

R(U)={{1,2},{1,2,3}}

RU={{},{3}}
R(rog)=R(U)uR(U)={{},{3},{1,2},{1,2,3}} Hence
{133 {12} {1,2,3}

00 331,25 {1,2,3}

{33 33 {3 {1,.2,3} {1.2}

{125 {12} {1,2,3} {} {3}

{1,2,35 {1,2,3} {1,2} {3} {}

R(rog)isasub group of2U and hence R(U) is a Rough Group.

Theorem3.2 If’Oa”(rog),”Ob”(rog)are rough groups, then
”Oa”(rog)N”’Ob”(rog)is also rough group. (unil is finite universe)
Proof
Letx,y€”9Da”(rog)N”Ob”(rog)

Since ¢ Canyset.sop€”Da”(unil)N’Ob”(unil)
==¢€”Oa”(rog)N"Ob”(rog)
=="9Da”(rog)N"Ob”(rog)=0

Since”Da”(rog)&”Ob”(rog)are sub groups of 2unil
==xAy€”a”(rog)N’Ob”(rog)
Hence the result.
Proposition3.1

Let”Oa”rog &”9Ob”rog be two rough groups then “Oa”rog N”Ob”rog C’Oa”rog N”Ob’rog

(where”9a”&”Ob” are two equivalence relations,unilis the universe)
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Proof

794" roy N 708" 1o, = ["Oa” (uni1)
— [”a
= ["94" (k1) N
C ["0a” (uni1) N 70p" (uniy)] U ["2a” (uni1) N "0p” (unii )|
= ['9a" (uni1) N "0y" (uni1)] U ["Oa

= ["0a" (uni1) U7D," (unit)] N [70s” (uniq) U 70" (uniq )]

U707 (uni)] N[0 (uniy) U7 0" (uniy))

N(uniy) N70" (uniqy)] U 72,7 (uniy) N70,7 (uniy )]

7Oy (unir| U [70a” (unit) N 70" (uniy))

7 unir) N70y" (uniy))

C 704" ro, M7 0" rog, hence upper approximation of intesection of rough groups is contained in its intersection

Proposition 3.2 Let "0, ,, & "Iy" ., be two rough groups then

7 a”roq U J.Jabﬂroq =7 DU.”TDU ) ”ab'ﬂrag
Proof
”Da”,—y uow,, = ["Oa" (uni1) U”0g" (Lmu)] u [”D.-,”(uml) U "0 (unii1))
= ["0u" (uni1) U 70" (uni)] U ["0u” (unir) U 70" (unii )]
— [?19 (wml) ”Db ,(’Lt.l’l.ll)} [MD ] (’Ll.i’l.l.l) ”Db”(umlﬂ
= ["0a" (uni1) U0, (uni1)] U [ 0" (uni1) U0y (unii))
= ["0a" (uniq ) U7 (unir)] U "0, (uniy) U”0," (uniy)]
= ["D." (uni;) U0, 704" (unin)| U ["0s” (unii) U " 0p” (uni. )]
="da" 0, U " Trog hence upper approximation of union of rough groups is equal to its union
B

Proposition 3.3 Let"0,",,, & "Oy" ., are two rough groups then
kM DarJ roq ﬂ J'Jab Y i Da .'roq n EH Db” ro,

Proof:

"D v, D4 ro, = [[Da (i) U”Da” (unin)] N Oy (unin) U7 Dy” (unin)
= [0 (unin) N 704" (unir)] U ['Da” (unir) 1725” (uniy)|
=[O (uniy) N0y (unig)] U ['D,” (uniy) 172y (uniy)]
= D" (unix) N 705" (unin)] U 124" (unir) 17237 (uniy)]
= ["9a” (unir) N 720" (unir)] U ["0a” (uniz) N "0y” (unin)]
= [0a” (unir) U”y” (unin)] N [ (unix) U”Dy” (uniy)]

"0, vog n7oy” o, hence lower approximation of intesection of rough groups is equal to its intersection
4 Rough GI‘Ollp Appl‘oximation Space Let (uniy,”v7) be approximation space &G = (2" A)bea
group & an eqmvalence reia.nrm ¥ (r() ) partitions G into

1" (uni), " 17 (uniy )}
Then the space (291 ) is called rough group approximation

Definition 4.1

equivalence classes {" 1" (uniq),”

Rough Groups Relation
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space. For A C 2"™L the upper & lower approximations are
given by

T (TOH)A — {Al £ unii |[Al]"’:‘|"(1"09) nA# (;5}

::,.n‘: (TOH)A — {Al = 2"“”1 |[A1]"'n"(r-r_}9) "; A}

Proposition 4.1
Let A, B C 2" be nonempty and " ~," (ro
equivalence relation then

) be a rough group

3. To Prove "7 (rog) 4 = "M (rog) , N7 " (rog) g

X €' (rog)anp) & X € [Y]7(ro,) € (AN B)
& X € "0 (uniy) U ("7 (uniy)
U ("1 " (uniy))] € (AN B)
& X € "0 (uniy) U "n” (uniy)
U ("1 " (unii))]

- - C AN " (uni
L "7 (rog)a € AC " (rog)? _( [( - () z} (unia))] |
- - - U ("1 (undr ) U (" (uniq))] € B
2. "N (rog) 9B =" (rog )t Uy " (rog) ® o ey e
) ) ) X e ('roy),q,ﬁ ! (Toy)g
3 " (reg)ane = "1 (reg)a Ny M (rey) g
4 ACB = "1 (rogla C ' (rog)s
5. AC B = " (rog)" € (ro,)" 4. Toprove AC B == "71"(rog), C"m"(rog) g
: Since ANB=A
6704”10, aum 2”10 (10y)4 U™ (10, oy = "W ro)unm = (g, 1
7. " (10, ) AT € "7 (rog)A 17 (ro,) s L
L L ’ = "7 (rog) 4 © TN (roy) g
8 "1"(rog) and V1" (rog) are equivalence relations then
7 (rog) € (rog) = "7 (rog)* € 7 (r0g)" 5. o prove ,! .
P f. A g B —_ :1,}_1!:(?_09); (; ”Aﬂ”(rog)
root: Since AUB =B
" " ”n ” B ” " "l
"0 (r0g)% = "m(rog) P =t (rog)t U
1. Let Xy € "41" (rog)a "1 (roy) A B
= X1 € [Y1]1,7(ra,) = "y (roy)" C 71" (roy)
also [Yi]o v (o) ©A == X1 € 4
o ) L ) 6. To prove
X12¢ © X7y (unidr) (o ¢ € "7 (uniy)) " {roq]{ = "7 (rog) o, U (rog) .
. ) . A]_ UB J&]_ and Bl
X1 € X3 uni) 14 ) £ O
) ) a0 E rs,:{,ls'. ro uB
= X S ‘-T " To 4 ! '!‘q ?1 ¢ ( |£U s-l} ” t1]
! 17 (rog) Hence "1’ {mg]{.:hum) 2" (rog) 4, U (rog) p,
2. To prove
n " " (TOH)AIUEI =" _}_l!!(?.og)-'il Bk o “(TOHJBI 7. TD prcwc
e aum 7 (rog) MM C 17 (rog) ™ N7 (rog)
Xe’ i (Tog] e Xe [Y]"‘n"(rog] n (Al u BZ) since A; 2 AAnNB & A NB C B
- . . — h LEDE LI, AynBy C YA ? Ay kLT By
e X € [Py (uniy) U ("7 (uniy) then "y17 (rog) C " (rog) M7 (rog)
U ("n” (unin))] N (A U Bi)
& X € " (uniy) N A, 8. Let D1, & Da,,, be two rough group relations on (21, A)
UXel™n” T (uniy) U7 7 (uniy) M B To prove D1, © D240, = Dl;'.iog C DQ;’}%
& X €77 (rog)™ or X € "yy" (ro,)? O1ra, S D20, = D1(k1)U1(k1) U1 (k1) C D2(k1)U
& X €7y (rog) M UX €7yp” (roy)sl Dg(hjl}i—azfml},i
B = Olro, = U210
@ X €7 (ro, i 1" (rog)”! ! !

"yo"(ro,) be rough group equivalence relations on G

Nuniq) U m U7y " (i )] N[ ”

(2umin A} then

[ 427" (unir) N 772" (uniy)] N A

(i) U 7y (g ) U 7™ (umig )] 11 A

(wni1)] U "1 " (wrin) N7 y2” (undy )] U

Tund) U (undn )] N CA] O [Ty (undy ) U e (undn ) U Ty (und )

Prﬂpomhon42 Let "y (ro,)" and
(7117 (rog) N 772" (rog))* = ("317 (roy))™ N ("2” (r0,)) "
Proaf
X1 € ("7 (reg) N7 (rog)) ! e Xy € (1] trag)rge” (rag)) M A
e X1 e [Ty (uni) 07" (
< Xy e [Py’
< Xy e [Py (unip) U7 p”
N A]
o Xy

€ (7 (r0g))™ N (27 (rog))"
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Hence the upper approximation of any set with respect to intersection of rough group equivalence relation is equal to intersection of
upper approximation of the set.

B

Proposition 4.3
Let "~1(roy)" and "~2"(ro,) be rough group equivalence relations on G = (2%, A) then ("7 (rog) N "y2"(rog))a =
("” ("'Oy))‘.l N (772" (rog) ),1

Proof:

“Xl € (r‘.jlﬂ{"roy} N ‘..P:'.Q-.:(?-OH))A A Xl € Iyll[""}']:'(r'o_q}ﬁ:"rz':(J'u_u)} g A

< Xy {1 (unin) N 72" (unin )] U [T (undy) 17427 (und)] U [Ty 7 (undn) N7 52" (wnda)]}
cA

< Xy e {7 (uniy) N7 (uniy)] © A O {797 (undy) N 77 (uniq )] © A}

CH{ [P 2™ (und) N 72" (uniq )] C A}

& Xy € {[Py " (uniy) Uy " (uniy) U7 (uniy)] € A} O {907 (unis )

2™ (uni1) U "2 (uniy )] € A}
e X1 e (" (rog))an ("2 (rog))a

Hence the lower approximation of any set with respect to intersection of .rough group equivalence relation is equal to intersection of
lower approximation of the set.

5 Results and Discussion

To develop rough set theory, it is essential to look at its algebraic structure. By considering upper and
lower approximations of rough sets, we defined rough groups in a more extended sense than previous
approaches such as considering the upper approximation of any subset in a finite universe and
demonstrating closure, associativity, and identity in the upper approximation, but the inverse exists in
the set itself [23] also considering abstract groups as universe set and its normal subgroups as
equivalence relation [9]. An exploration of the expansive properties of rough groups based on the rough

group equivalence relation has been presented in this paper.

6 Conclusions

The algebraic aspects of rough set theory have been integral to the development of rough set theory
concept as algebraic structures allow the detailed study of set theoretic properties. Rough groups are
introduced in this paper using both upper and lower approximations to rough sets within a finite
universe. Further more, rough groups have been shown to have expansive proper ties such as upper
approximation of intersection of rough groups is contained in its intersection while lower approximation
of inter section of rough groups is equal to its intersection. Also upper approximation of union of rough
groups 1s equal to it union. Based on rough group equivalence, we have defined a rough group
approximation space and derived the upper and lower approximations of any set. More studies will be
conducted in the future to examine rough group properties in greater detail. A similar extension can be

made to other algebraic structures as well.

Mathematics and Statistics ( Volume No. - 13, Issue - 2, May - August 2025) Page No.08



ISSN: 2332-2071 (Print)
ISSN: 2332-2144 (Online)

REFERENCES

[1] Zdzislaw Pawlak, Rough Sets, International Journal of Computer & Information Sciences, 1982.

[2] Pawlak Z, Rough sets— Theoretical aspects of reasoning about Data. Kluwer Academic Publishers,
1991.

[3] Yao, Y.Y., On generalizing Pawlak approximation operators, Lecture Notes in Artificial Intelligence,
pp-298-307, 1998

[4] Miao, D.Q., Wang, J, An information representation of concepts and operations in rough Sets.
Journal of Software, vol. 10(2), pp. 113-116, 1999.

[5] Z. Bonikowski, Algebraic Structures of Rough Sets, Rough Sets, Fuzzy Sets and Knowledge
Discovery- Proceedings of the International Workshop on Rough Sets and Knowledge Discovery
RSKD’1993 Springer-Verlag, pp. 242-247, 1994.

[6] J. Iwinski, Algebraic Approach to Rough Sets, Bull Polish Acad Sci Math, Vol. 35, pp. 673-683,
1987.

[7] J. Pomykala and J.A.Pomykala, The Stone Algebra of Rough Sets, Bull Polish Acad Sci Math, vol.
36, pp. 495-508, 1988.

[8] B. Davvaz, Roughness in rings, Inform. Sci. vol. 164 pp. 147—163, 2004.

[9] N. Kuroki & P. P. Wang, The Lower and Upper Approximations in a Fuzzy Group, Information
Sciences, vol. 90, pp. 203-220, 1996.

[10] N.Bagirmaz, I. Icen, A.F. Ozcan, Topological rough groups, Topol. Algebra Appl. vol 4, pp. 31-38,
2016.

[11] Radwan Abu-Gdairi, Mostafa A. El-Gayar, Mostafa K. El-Bably and Kamel K. Fleifel, Two
Different Views for Generalized Rough Sets with Applications, Mathematics, vol. 9,2275, 2021.

[12] A.S. Salama, Essam El-Seidy, A.K. Salah, Properties of different types of rough approximations
defined by a family of dominance relations, International Journal of Fuzzy Logic and Intelligent
Systems, Vol. 22, pp. 193-201, 2022.

[13] T M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst. Vol.
8, pp.4101—4113,2022.

[14] Al-shami, T.M, Fu, W.Q, Abo-Tabl, E.A., New rough approximations based on E-neighborhoods.
Complexity, Vol.2021, 2021.

[15] El-Bably, M K, Fleifel K.K, Embaby O.A, Topological approaches to rough approximations based
on closure operators. Granul. Comput.pp. 1-14, 2021.

[16] A.C,.Guler, E.D. Yildirim, O.B. Ozbakir, Rough approximations based on different topologies via
ideals, Turk. J. Math., vol. 46, pp.1177-1192,2022.

[17] M. Hosny, Tareq M. Al-shami, Abdelwaheb Mhemdi, Novel approaches of generalized rough

Mathematics and Statistics ( Volume No. - 13, Issue - 2, May - August 2025) Page No.09



ISSN: 2332-2071 (Print)
ISSN: 2332-2144 (Online)

approximation spaces inspired by maximal neighbourhoods and ideals, Alexandria Engineering
Journal, vol. 69, 497-520, 2023.

[18] A. S. Nawar, M. K. El-Bably, and A. A. El-Atik, Certain types of coverings based rough sets with
application, Journal of Intelligent and Fuzzy Systems, Vol. 39, no.3, pp.3085-3098, 2020.

[19] M. Atef, A. M. Khalil, S.G. Li, A. A. Azzam, and A. A. ElAtik, Comparison of six types of rough
approximations based on jneighborhood space and j-adhesion neighborhood space, Journal of
Intelligent and Fuzzy Systems, vol. 39, no. 3, pp. 515-4531, 2020.

[20] M. Hosny, Topological approach for rough sets by using J-nearly concepts via ideals, Filomat Vol.
34, pp. 273-286, 2020.

[21] Pradeep Shende, Arvind Kumar Sinha, A Novel Concept of Uncertainty Optimization Based Multi-
Granular Rough Set and Its Application, Mathematics and Statistics, Vol.9, No.4, pp. 608-616, 2021.
DOI: 10.13189/ms.2021.090420.

[22] Arvind Kumar Sinha, Pradeep Shende, Uncertainty Optimization Based Rough Set for Incomplete
Information Systems, Mathematics and Statistics, Vol.10, No.4, pp. 759-772, 2022. DOI:
10.13189/ms.2022.100407.

[23] R. Biswas & S. Nanda, Rough groups and Rough Subgroups, Bull Polish Acad Sci Math, vol. 42,
pp-251-254, 1994.

[24] Duogian Miao, Suging Han, Daoguo Li, and Lijun Sun, Rough group, rough subgroup and their
properties, Springer-Verlag Berlin Heidelberg, 2005.

[25] Changzhong Wang, Degang Chen, Qinghua Hu, On rough approximations of groups, Int. J. Mach.
Learn. & Cyber, 2012.

[26] M. Artin, Algebra, Prentice Hall of India, N.Delhi, 2004.

Mathematics and Statistics ( Volume No. - 13, Issue - 2, May - August 2025) Page No.10



ISSN: 2332-2071 (Print)
ISSN: 2332-2144 (Online)

Neutrosophic Generalized Pareto Distribution

Nahed 1. Eassal,*, Hegazy M. Zaher1, Noura A. T. Abu ElI-Magd2
1Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt
2Faculty of Politics and Economics, Beni-Suef University, Egypt

ABSTRACT

e N
The purpose of this paper is to present a neutrosophic form of the generalized Pareto distribution (NGPD)

which is more flexible than the existing classical distribution and deals with indeterminate, incomplete
and imprecise data in a flexible manner. In addition to this, NGPD will be obtained as a generalization of
the neutrousophic Pareto distribution. Also, the paper introduces its special cases as neutrosophic Lomax
distribution. The mathematical properties of the proposed distributions, such as mean, variance and
moment generating function are derived. Additionally, the analysis of reliability properties, including
survival and hazard rate functions, is mentioned. Furthermore, neutrosophic random variable for Pareto
distribution was presented and recommended using it when data in the interval form follow a Pareto
distribution and have some sort of indeterminacy. This research deals the statistical problems that have
inaccurate and vague data. The proposed model NGPD is widely used in finance to model low probability
events. So, it is applied to a real-world data set to modelling the public debt in Egypt for the purpose of
dealing with neutrosophic scale and shape parameters, finally the conclusions are discussed.

Keywords Lomax Distribution, Neutrosophic Logic , Generalized Pareto Distributionwith Tow
Parameters, Neutrosophic Pareto Distribution, Neutrosophic Exponential Distribution, Neutrosophic
Uniform

N J

1. Introduction

The Generalized Pareto distribution (GPD) is widely used in extreme value theory, engineering,
industrial and finance. GPD is related to several distributions such as Exponential, Lomax, and Uniform
distributions. To add flexibility to this model, neutrosophic Logic has been used. Neutrosophy was
presented by Smarandache in 1995, as a generalization for the fuzzy logic and intuitionist fuzzy logic
[1]. Fuzzy logic which is the special case of neutrosophic logic gives information only about the
measures of truth and falseness. The neutrosophic logic gives information about the measure of
indeterminacy additionally. The neutrosophic logic used the set analysis, where any type of set can be
used to capture the data inside the intervals.
Neutrosophic statistics which utilize the idea of neutrosophic logic are found to be more efficient than
classical statistics [1]. Neutrosophic statistics deal with the data having imprecise, interval, and
uncertain observations. Neutrosophic statistics reduce to classical statistics when no indeterminacy is
found in the data or the parameters of statistical distribution. Various applications of neutrosophic logic
canbereadin[2,3].

Many researchers have introduced neutrosophic logic as an extended and generalized approach to the
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classical distributions such as neutrosophic Weibull distribution [4] and its several families,
neutrosophic binomial distribution and neutrosophic normal distribution [5], neutrosophic multinomial
distribution, neutrosophic Poisson [6], neutrosophic exponential [7,8], neutrosophic distribution,
neutrosophic gamma distribution [9], neutrosophic beta distribution [10], and neutrosophic Rayleigh
model [11]. The neutrosophic Pareto distribution (NPD), generalization of the Pareto distribution is
developed by Zahid khan et al. [12]. Almarashet and aslam [13] presented a repetitive sampling control
chart for the gamma distribution under the indeterminate environment.

This paper proposes neutrosophic Pareto distribution with neutrosophic random variables,
Neutrosophic distribution and neutrosophic Generalized Pareto distributions.

The paper is organized as follows: The next section describes the neutrosophic generalized Pareto with
two parameters and some special cases. In section 3, it studies the probability density function (pdf),
cumulative density function (cdf), and hazard rate function of the neutrosophic Lomax distribution
model. The mathematical statistics studied in the subsequent section such as mean and variance.

Then, we will introduce the neutrosophic Pareto distribution model in section 4. Finally, section 5

concludes the research outcomes.

2.The Neutrosophic Generalized Pareto Distribution (NGPD)
The neutrosophic generalized Pareto distribution is a family of continuous probability distributions. It is
often used to model the tails of another distribution. NGPD will be obtained as a generalization of the
neutrousophic Pareto distribution given by Zahed Khan et al. [12]. The NGPD is related to several
distributions such as neutrosophic Exponential, Uniform distribution which is introduced by Carlos
Granadosaetal. [ 14] and neutrosophic Lomax distribution, as it will be shown below.
We can have defined the NGPD with neutrosophic parameters as follows:
*  The probability density function (pd)) is given by:
fGyan, f) =5 (L+ 5575 x> 0,an, By > 0 (1)
when shape parameter ay = 0, the density is:
f(,0,83) =5me @/ x>0,y >0 @)

(Exponential distribution)
¢ The cumulative distribution function (cdf):

F(r,ay By) = 1— (1+“B¢:)“_~,- ay# 0,6y >0 (3)

X
Flx,ay =0,fy) =1—e Pn; ay =0,y >0

x=0,whenay =0and 0 <x < —%whenaN <0 (4
N

. The hazard rate function:
h(x, ap, By) = (Byx +ay) L x> 0,ay, By >0 (9)
*  The survival function:
1
s(x, ay, By) = (%‘;_:M)'B” ;x> 0anday, By >0 (6)

Where aj is neutrosophic scale parameter and £, is a
neutrosophic shape parameter ay € (a;, ay) and By €

(B Bu).
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The pdf curves of the NGPD are presented in Figure 1. The graphical expression of the f(x,ay,By) ofthe

neutrosophic generalized Pareto with imprecise parameters.
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Figure 1. Theneutrosophic shape parameter and the neutrosophic scale parameter
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Figure 1-A shows the pdf curve of the distribution with
the neutrosophic shape parameter ay =[1, 4] if the data are
believed to be NGPD with By = 1. Figure 1-B shows the
neutrosophic shape parameter if ay < 0. Also, Figure 1-C
shows the NGPD with neutrosophic scale parameters By =
[1, 2] and ay = 1.

2.2. The Properties of NGPD

We will introduce some properties of NGPD, such as

mean, variance and special cases.
1-  The Mean of NGPD

uy =E(x) = fx—(l +—) e Yax

1
x(1+ ) av “dx
ﬁwj BN
B
Hy = 1 _NaN ; oy <1

3) If ay = —1, then the NGPD will be neutrosophic

uniform (0,8y).
1 —X 1
f(x,—1,By) == (1 + =)' = — = Uniform(0, By)
BN N 5!\’

3. The Neutrosophic Lomax
Distribution (NLD)

The Lomax distribution, also called the Pareto Type II
distribution was presented by Lomax in the mid of the last
century, and it is a heavy-tail probability distribution used
in economics and business failure data. To improve the
flexibility of the existing model, there are some methods as
increasing the number of parameters, making some
transformation [15] and proper mixing of two distributions
[16]. In this paper, we present a new model (neutrosophic
logic) to add more flexibility with incomplete data and
indeterminacy data.

The probability density function of a Lomax distribution
with neutrosophic shape parameter ay >0 and
neutrosophic scale parameter By > 0 is given by

=(an+1)
) ;x 2 0andfy,ay >0 (9)

fol) =g (1+ -
where ay= (a;,ay) and By = (BL, By)- Note that the
NGPD differs from the classical distribution, when the
indeterminate part with shape and scale parameters is
considered zero in the neutrosophic Lomax distribution,
that is, o =ay=a and B, =fy =, it tends to
classical Lomax distribution.

3.1. The Properties of the Neutrosophic Lomax
Distribution (NLD)

= ™

Hy = 1-a;’ 1-ay

2- The Variance:
V() =E(x%)-(uy)*

oo

E(x®) = f x2(1+ CZ‘:VX
0

Yan dx

1 < 1
T 1_2ay ' MT2
- B , 1
var(x) = e (e N <3 (8)

3- Special Cases:

1) If the neutrosophic shape parameter ay =0 in
equation 1, the NGPD will be equivalent to
neutrosophic exponential distribution as shown in
equation 2.

2) If ay > 0, the NGPD will be neutrosophic Lomax
distribution as shown in equation (9).

6- The Inverse Distribution Function of the NLD:
(1- u)'lj"’ﬁNi

Fiqe) =2 e

= (15)

4. Neutrosophic Pareto Distribution
(NPD) Model

The Pareto distribution, is the power-law probability
distribution that is used in description of social, quality
control, scientific, geophysical, actuarial and many other
areas. A neutrosophic Pareto distribution is a classical
Pareto distribution but its parameters nor its variables are
unclear or imprecise. Zahed Khan et al. [12] introduced the
neutrosophic Pareto distribution model in the neutrosophic
parameter and studied its properties. In this paper we will
investigate the neutrosophic random variable for Pareto
distribution.

The neutrosophic random variable x follows the NPD
model with the following neutrosophic density function:

fulx) = “i:f;:l(l +1y); forxy > fyandpy,ay >0
(16)

where ( apay) is neutrosophic shape
parameter, By = (5, By) is neutrosophic scale parameter
and xy € (x;,xy) is neutrosophic random variable,
where xy =x, +xyly and Iy€ ({,,I;) is an
indeterminacy interval where N is the neutrosophic
statistical number. The netrosophic Pareto distribution
tends to the classical distribution when I, = 0.

The corresponding neutrosophic cumulative distribution
is:

Oy =
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We will introduce here the properties of the neutrosophic
Lomax distribution (NLD), such as the cumulative
distribution function, the mean, variance, the survivor
function, the hazard function and the inverse distribution
function.

1- The Cumulative Distribution Function (cdf) of the
NLD:

x \ AN
Fy(0) =1-(1 +B—N)
2- The Mean of the NLD:

x = 0 andfy, ay > 0 (10)
E(xy) = %fcrcx” >1 (11)

3- The Variance of the NLD:
(Bn)2an

v(xy) = meTCIN >2 (12)
4- The Survivor Function of the NLD:
S(x) = (1+ Byx)™™ (13)

5- The HAzard Function of the NLD:

Hix) = auIn (1 4+ Rux)
Vixy) = E(x;%) — p?

(14

By
e Y

Bn TN

E(xE) =(1+1y)

NBN

Ay —

NﬁN

(1 + L) foray > 2

A

V() = 20) (141

foray > 2

(1 +1Iy) — [(a

(19)
3- The Moment Generating Function of the NPD:

et aﬁﬁ%fd XN
Bw N
=1+ Iyay(—Byt)~

To add more flexibility to the neutrosophic Pareto
distribution, various families and generalization of the
neutrosophic distribution have been derived including the
neutrosophic generalized Pareto distribution with tow
parameter.

Moy (€) = E(e¥N) = (1 + Iy)

(20)

1
s(x,ay, By) = (“—N)‘BN; x> 0anday, fy >0 (21)

Bnx+ay

By

Fy(x) = (1 - (;)QN) (1+1Iy), xy > ByandBy, ay >0 (17)

4.1. Statistical Properties of Neutrosophic Pareto
Distribution

The main properties of mathematical statistics like mean,
variance, quantile and moment generating functions have
been studied in this section.

1- The Mean of NPD:

E(xy) = (1 +1y)
Bn

— (4 I B fB

XNNEN uN+1 de

o0

—an
Xy dxy

= on P (l-I-IN) for ay > 1

N —

— [ﬂlﬁl (1+I) oy Bu (1_'_ lu)]

(18)

2-  The Variance of the NPD:
where ay is a neutrosophic scale parameter and Sy is a
neutrosophic shape parameter.ay € (a;,ay) and fy €

(Bu, Bw)-

5. Real Application

In this part, a practical application using a real-world
data set has been used to assess the interest in the NGPD
model.

The public debt in Egypt is increasing at an alarming rate
This study has applied the extreme value theory in
modelling the public debt where NGPD has been used. In
Figure 2, the PDF-plot demonstrates that the GPD will fit
public debt in Egypt.

The data under consideration includes a set of public
debt in Egypt covering the period from 2000 to 2022. The
data reported by central bank of Egypt
(https://www.cbe.org.eg/ar/economic-research) are shown
in Table 1. The observations in this dataset represent the
public debt (in millions dollar). The data from sources are
crisp values; for the purpose of illustration we treat the data
set such as shown in Table 1 and the graphical summary of
crisp data is shown in Figure 2.
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Figure 2. The graphical summary of crisp data
Table 1. Sample from data of Public debit in Egypt
[27780.1, 27783.3] 26560 28660 29396.2
16384.8 29592.6 29898
[33850 ,33892] 31531.1 [46060,46067.1] 29871.8
33694.2 34905.7 34384.5 432334
48062.9 55764.4 [79032.8,79033] 192613.9, 92643.9]
108699.1 123490.5 137859.6 [155608.9,155708.9]

The data aren't precisely reported but are provided in
intervals. These uncertainties in the sample render the
classical generalized Pareto models inapplicable. On the
contrary, the NGP may effectively be used to investigate
the properties of the neutrosophic data set. The descriptive
statistics of the public debt data using the NGP model are
given in Table 2. The following Table 3 is the result of
fitting NGPD:

Table 2. Parameters Estimation

parameters estimate

Shape parameter oy [0.25397,0.2536]

Scale parameter By [26528,26543]

threshold [19968,19955]

Table 3. Neutrosophic statistics of public debt data by using NGP

Descriptive measures

Mean [55516,55527]
Variance [2.5662E+9,2.5697E+09]

Mode [19955,19968]
Skewness [7.3581,7.3890]

generalized Pareto distribution. To test the assumption, we
applied the neutrosophic Kolmogrov-Smirnov (NK-S) test,
which are the generalization of the Kolmogrov-Smirnov
[17]. The results are shown in Table 4.

The neutrosophic null hypothesis that the sample coming
from the NGPD is accepted when Dy € [D;,Dy] <
D, y-where D, 5 is a neutrosophic critical value. Note here
that theDy €[0.15589, 0.15601]<0.28358 then the data
follow the NGPD.

6. Conclusions

The NGPD plays an important role in modelling extreme
value when data is incomplete or indeterminate. This paper
discussed the new neutrosophic distribution (neutrosophic
Generalized Pareto distribution). The neutrosophic Lomax
distribution and neutrosophic Pareto distribution are a
special case study from the NGPD. Properties of
mathematical characteristics of the proposed distributions
under an indeterminacy environment are described. The
effectiveness of the proposed model NGPD has been
demonstrated by using a real dataset on Public debit data.

In the future, the estimation of parameters for the NGPD
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Table 2 and Table 3 show the estimated neutrosophic
measures based on the NGPD. All the estimated values are
expressed as intervals because of indeterminacies inherent
in the analyzed dataset.

To estimate the Generalized Pareto Distribution (GPD)
model parameters, we find that the shape parameter
ay= [0.25397,0.2536], the scale
parameter, By=[26528,26543] and the Threshold is [19968,
19955] as shown in Table 2.

5.1. Goodness of Fit Test for Neutrosophic Data

Table 4. Goodness-of fit test for the data by NK-S tests

NK-S a=0.05
Model Critical value Statistic(D'y)
Do o523
NGPD 0.28358 [0.15589, 0.15601]

For the public debt in Egyptdata, we interested in testing
the assumption that the data follows a neutrosouphic
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ABSTRACT

This article presents an innovative approach to solving linear systems with interval coefficients
efficiently. The use of intervals allows the uncertainty and measurement errors inherent in many practical
applications to be considered. We focus on the solution algorithm based on the Cholesky decomposition
applied to positive symmetric matrices and illustrate its efficiency by applying it to the Leontief
economic model. First, we use Sylvester’s criterion to check whether a symmetric matrix is positive,
which is an essential condition for the Cholesky decomposition to be applicable. It guarantees the validity
of our solution algorithm and avoids undesirable errors. Using theoretical analyses and numerical
simulations, we show that our algorithm based on the Cholesky decomposition performs remarkably
well in terms of accuracy. To evaluate our method in concrete terms, we apply it to the Leontief economic
model. This model is widely used to analyze the economic interdependencies between different sectors of
an economy. By considering the uncertainty in the coefficients, our approach offers a more realistic and
reliable solution to the Leontief model. The results obtained demonstrate the relevance and effectiveness
of our algorithm for solving linear systems with interval coefficients, as well as its successful application
to the Leontief model. These advances are crucial for fields such as economics, engineering, and the
social sciences, where data uncertainty can greatly affect the results of analyses. In summary, this article
highlights the importance of interval arithmetic and Cholesky’s method in solving linear systems with
interval coefficients. Applying these tools to the Leontief model can help you better understand the
impact of uncertainty and make informed decisions in a variety of fields, including economics and
engineering.

Keywords  Arithmetic Interval, Interval Matrix, System of Interval Linear Equations, Decomposition

of Cholesky
- J

1. Introduction

Interval arithmetic is the branch of mathematics concerned with the properties and operations of
numerical intervals. Although it may seem abstract at first glance, interval arithmetic has practical
applications in many fields, from computing and engineering to the physics and economics. It allows the
manipulation of intervals rather than exact numbers. This mathematical discipline allows uncertainty,
imprecision, or measurement error to be expressed formally and rigorously. In addition, interval
arithmetic offers a new approach to complex mathematical problems where the quantities involved are
uncertain or difficult to evaluate accurately, which can lead to a deeper understanding of the concepts

and the exploration of innovative solutions.
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This article focuses on solving the AX = B system applied to matrices with interval coefficients using the Cholesky
decomposition, a method used to factor a symmetric positive definite matrix into a product of two lower triangular matrices
and its transpose with interval coefficients. More precisely, this factorization makes it possible to solve the system more
efficiently.

Using this approach in the Leontief model, the relationships between the different economic sectors are generally
represented by a system of linear equations [1] which describe the total demand of each sector as a function of the total
production of the other sectors. However, there are often uncertainties and errors in the data used to construct these equations.

Where interval arithmetic is used, uncertain or poorly measured values can be represented by intervals instead of precise

numbers. This allows uncertainties in the results to be considered and the impact of errors on economic predictions to be

quantified.

In this article, we will discuss the Cholesky decomposition
to solve a linear system with interval coefficients and apply
this decomposition to an economic model called the Leontief
model.

2 Interval arithmetic

2.1 Elementary operations on intervals

Let IR = {d@=|ay;a2) : a1 < apanda,, a; € R} be the set of
all proper intervals and IR ={a@=lay;az): a1 > az; a1, az € R}
be the set of all improper intervals on the real line R. If
a; = a, = a, then @ = [a,a] = a is a real number (or a
degenerate interval). We shall use the terms "interval” and "in-
terval number" interchangeably. The mid-point and width(or

half-width) of an interval number @ = [a;, a»] are defined as
day + da ay — )
m(d) =

generalized intervals(proper and improper) by :

and w(d) = We denote the set of

KR=IRUIR= {[a);az) : a1, az € R}

The set of generalized intervals KR is a group with respect to
addition and multiplication operations of zero free intervals,
while maintaining the inclusion monotonicity.

The "dual" is an important monadic operator proposed
by kaucher that reverses the end-points of the intervals
in KR. For @ = [a,a2] € KR, its dual is defined by
dual(@) = dual(lay,az]) = lap,ap]. The opposite of an
interval @ = [ay, az] is opp([a, az]) = [—a1,—ap] which is the
additive inverse of [a,,a»] and aiai is the multiplicative
inverse of [ay, ay], provided 0 ¢ [aljag]z.

That is, @+ (—dual(@)) =[0,0] and @ x =[1,1].

dual(a)

Ganesan and Veeramani [2] proposed new interval arith-
metic on IR. We extend these arithmetic operations to the
set of generalized interval numbers KR and incorporate the

2.2 Interval matrices
2.2.1 Definitions

A square interval matrix Ay , of order n is defined as a ma-
trix and can be written in the form [3] :

ay,  dp al,n
— —_— az1 22 aa n
Ann = (ai’j)leEH,lS_fﬁn = :

tpl dp2 p,n

If @and E}Z,Larc interval matrices and a € R, then :
s ahApn= a(aisf)lsisn,lsjsn

* m + _'Br;r-; = [fi?} + E:}]lsisn,l&jsn

. m - E;:;= (Z?Fj - E:}]lsisn.lsjsn if
Apn—Bon=l0;0]if A=B

n

h An,n-Brr,n = [Z Ei—‘ibkj]
k=1

The transpose of a square matrix A, , of order n is an

. . . —T .
interval coefficient matrix denoted by: A, , . obtained by
exchanging the rows and columns of A, , .

A # B,

Il=i=nl=j=n

A symmetric matrix with interval coefficient: A symmetric
matrix m of order n is a square matrix which is equal to its
own transpose, i.e. such that @; ; = @; ; for all i and j between
1 and n, where the @; ; are the interval matrix coefficients and
n is its order.

2.2.2 Determinant of an interval coefficient matrix

For any square matrix m of order n with interval coeffi-
cient corresponds a value called the determinant of ﬁ:; noted
det(A,,,), the method of calculating the determinant remains
the same from the case of matrices with interval coefficients
except the determinant of un interval matrix in an interval [3].
It is easy to see that most of the properties of the determinant
of a classical matrix are valid for the determinant of the
interval matrix.
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concept of dual.
For @ = [ay;az2] , b=[b1;b2] € KR and for = € {+;—; x;+} we
define :

a+ b=[m(@)  m(b) — k; m(@) x m(b) + k] and
k=min{(m(@ * m(b) - a; - (m(@ » mb))}

a and f are the end points of the interval @ and b

If @=[a;az] € KR is positive, we define Va as

Va=lyag;/ap)
It is clear that by this notation, we have Vax va=a
3.1.2 Sylvester’s criterion :

For a symmetric matrix with interval coefficient A,, , of size
n to be positive definite, it is necessary and sufficient that the n
principal minors (Ap)ls;pin are strictly positive intervals.

3.1.3 Example 1:

Consider the symmetric interval matrix

3.7;4.3]  [-1.5;-0.5] [0;0]
A= ([—1.5; -0.5]  [3.7;4.3]  [-1.5;-0.5] | Let’s check
[0;0] [-1.5:—05]  [3.7;4.3]

if A is a positive definite square symmetric matrix using
Sylvester’s criterion:
We have :

[3.7;4.3]| = (3.7;4.3] > 0

and [_[?;‘:‘;’]5] [ [;34(;]5] =[11.94;18.06] >0
and
[3.7;4.3] [—1.5;-0.5] [0; 0]
[-1.5;-0.5] [3.7;4.3] [-1.5;-0.5]| = [37.10;74.89] >0
(0;0) (-1.5;-05]  [3.7;4.3]

So A is symmetric positive definite.

3.2 Cholesky decomposition
If A is a square matrix with interval coefficient symmetric
and positive definite, then there exists a lower triangular matrix
with interval coefficient F which satisfies:

A=FEFT

This decomposition, called the factorization of Cholesky, is
the product of a lower triangular matrix F by its transpose.
Let A, ,, be a square matrix of order n and interval coefficient
such that:

Gz1 @22 G2,n
An,n = . .
Ap1 Anp Anp

3 Solving the A X=B system using the
Choleski decomposition
3.1 Positive definite matrix and the Sylvester criterion

3.1.1 Definitions

Let A, ,, be a symmetric square matrix with interval coeffi-
cient of size n . We call principal minors the determinants of
the n matrices A, = (a;,), for p ranging from 1 to n.
Sylvester’s criterion provides a simple method for testing the
positive definiteness of a matrix A,,,.

Withi=j+1,j+2,...n
And

(2)

With j=1,2,...,n

Consequences

If A is a square matrix of order 3 and satisfies all the
conditions, then from (I) and (@) the interval coefficients of
the matrix F are defined by:

el =l

Solving the A X=8 system

To solve a linear system involving interval matrices, we
seek to find the smallest interval vector containing the set of
vectors X such that there exists a point matrix A€ Aand Be B
and we have the equality Ax = B.

Calculation algorithm

Let A and B be two square matrices of order n with interval
coefficients. Solving the system AX = B consists of going
through the following steps:

Step 1 : Check if A is a positive definite symmetric matrix
using Sylvester’s criterion.

Step 2 : Decompose Aas FxFT using Cholesky decomposi-
tion.
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If F a lower triangular Matrix with interval coefficient that
satisfies A= FFT:

So: . ~ R
by, 0 0
| b1 b2 0
Fn,n = . .
a1 bna B
Such as :
SR I D A .
bf,j=I aj,j_zbi.k-bj,k (1)
bjj k=1

intervals during arithmetic operations (sum, subtraction, mul-
tiplication, etc.), which increases the number of operations re-
quired. If n is the size of the matrix, the complexity is neces-
sarily greater than the order O(n®).

Operations with intervals can be more costly in terms of cal-
culation time. Interval propagation during Cholesky decom-
position may require additional computations to maintain the
validity of the intervals. This can lead to an increase in execu-
tion time compared to the case of real matrices.

4 Application and comparison

4.1 Application

We take the symmetric matrix :

[3.7;4.3] [—1.5;-0.5] [0;0]
A = [[-15-05] [3.7;4.3] [—1_5;—0.5]) and B=
[0;0] [-1.5;-0.5]  [3.7;4.3]
[—14;0]
[=9;0] | in example 1, we have shown that A is symmetric
(—3;0]

positive definite, so we can decompose it as a product of a
triangular matrix by its transpose using the decomposition of
Cholesky

biy 0 0 [1.9;2.07] [0;0]
F=|by: bza 0 |=|1-0.76;,-0.24] [1.76;2.06]
bs1 by, bas [0;0] (~0.8; —0.24]
We can notice that:
[3.60;4.27]  [-1.52;—0.45) (0;0]
ExFET ~|[-1.52,-045] [3.15;4.64] [-1.56;—0.42]
[0:0] [-1.56;—0.42]  [3.08;4.67]
A

let’s put F7X = ¥ and we solve the system FY = B, we find :

[-7.05;0]
V=|1-6.54;0]
[-3.35;0]

System resolution AX = B is to solve FTX = V.
[~4.53;0]

(—3.9;0]
[-1.76;0]

Step3: Weset FTX=7.
Step 4 : Solve the system FY = B.
Step 5 : Solve the system FTX =Y.

Complexity of Cholesky decomposition

The Cholesky decomposition for matrices with interval co-
efficients has specific characteristics compared with the case of
real matrices. In terms of complexity, the Cholesky decompo-
sition for matrices with interval coefficients is generally higher
than for real matrices. This is due to the need to manipulate

Benmohamed Khier using Gauss elimination [6]

We notice that the method of Choleski with the arithmetic
of the intervals gives more precise results and is very close
compared to the others.

5 An application in input-output (I-O)
model

5.1 The Leontief model

Leontief’s model [1] helps analyze inter-industry produc-
tion and economic relationships in an economy. The model
assumes that each industry uses a combination of goods and
services produced by other industries to produce its own goods
and services.

Leontief’s model uses an input-output matrix, also known as
an "input-output matrix," which shows the quantity of each
product needed to produce one unit of each final product.
This matrix is used to calculate inter-industry linkages and
multiplier effects in the economy. The Leontief model can be
used to assess the impact of disruptions on specific industries
or on the economy as a whole. It can also be used to assess the
impact of economic policies, such as industrial development

[O:gr]olic s or trade policies.
(0;0]
[1.74;2.06]

5.2 A symmetric input-output matrix

A symmetric input-output matrix is one in which the quan-
tity of each final product needed to produce a unit is the same
regardless of the final product under consideration.

In a symmetric input-output matrix, the diagonal elements rep-
resent the share of total output that each industry uses to pro-
duce its own product. The off-diagonal elements represent the
quantities of each product needed to produce one unit of each
final product.

A symmetric input-output matrix represents an economy in
which all industries are equally interrelated and interdepen-
dent. In other words, each industry depends on other industries
to produce its own products, and each industry also contributes
to the production of other industries, which can have a larger
multiplier effect in the economy. Indeed, a disruption in one
industry can have an impact on the entire economy, as each
industry is closely linked to other industries.
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4.2 Comparison of results:

[—6.38;0.]
[—6.40;1.32]
[—3.40;0]
Gauss elimination [4]

[-6.38;1.12]
[—6.40;1.54]
[—3.40;1.40]
Hansen’s technique [5]
[—4.482;0]
[-3.816;0]
[—1.776;0.006]

X= the result found by Ning et al using

X= the result found by Ning et al using

X= the result found by karkar nora -
tivity analyses or simulations to assess the impact of different
uncertainties on the economy. For example, by modifying the
intervals, it is possible to determine how changes in the output
of one industry affect overall output and other industries. How-
ever, results obtained from an input-output matrix with interval
coefficients may be less accurate than those obtained from a
matrix with accurate numerical coefficients. It is therefore im-
portant to take into account the margin of error associated with
the intervals when interpreting the results obtained from this
matrix.

5.4 Application

Consider the input-output table (table 1) for this economic
system with 3 industries A, B and C, where the coefficients are
represented by intervals:

Let
Table 1. [nput-output table
A [0.1:02] || 102:03) || 10.1:02] || (7:9]
B [0.2:0.3] || 03:04) || 10.2:03] || (2:3]
c [0.1:0.2] || 02:0.3) || 103:04] || [0:0]
« X : be the production matrix
o A: the domestic consumption matrix
 Z : the export matrix

« T: the identity matrix
To determine the level of production we solve the system

—

X=AX+2 (3)
BezZ=0-AHX
We put :
[0.8;0.9] [-0.3;-0.2] [-0.2;—-0.1]
B=(T-A=|1-03;-02] [0.6:0.7] [-0.3;-0.2]
[-0.2;—0.1] [-0.3;-0.2]  [0.6;0.7]
Using the Sylvester criterion
[10.8;0.9]] = [0.8;0.9] >0 ,
[0.8;0.9] [-0.3;-0.2]
(-03;-02] [0.6:0.7) |~ [0-40581>0
And we have :
[0.8;0.9] [-03;-0.2] [-0.2;—-0.1]
det(B)=|[-0.3;-02] [0.6;0.7] [-0.3;-0.2]
[-0.2;-0.1] [-0.3;-0.2]  [0.6;0.7]
=1[0.12;0.33] > 0

The matrix B verifies the Sylvester criterion so it admits a
Cholesky decomposition.

53

If the coefficients of the input-output matrix are substituted
with intervals instead of precise numerical values, it means that
the exact quantities of each product needed to produce one unit
of each final product are unknown or uncertain. The intervals
may represent a range of possible values or uncertainty about
the exact quantities needed. In this case, the interpretation of
the input-output matrix must be modified accordingly. Instead
of representing exact quantities, the input-output matrix rep-
resents qualitative relationships between industries and prod-
ucts. The interval coefficients can be used to perform sensi-

Input-output matrix with interval coefficient

solve the system BX = Z
We find :

[9.71;19.98)
[6.61;19.33]
[3.15;13.85)

By
1l

6 Conclusions

The Cholesky decomposition is a numerically stable
method to efficiently solve linear systems with interval co-
efficients. It also reduces the number of operations required
to solve the system compared to other methods such as the
Gauss-Jordan and Hansen methods.

In summary, the Cholesky decomposition is an important
method for solving linear systems with interval coefficients be-
cause it guarantees the positive definition of the matrix, guar-
antees that the solution is also an interval, and can solve the
system efficiently and numerically stable.
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ABSTRACT

~
In the context of the Neutrosophic Norm, the essay explores the challenge of constructing precise

sequence spaces whose elements’ convergence is a generalised form of the Cauchy convergence. It has
proven to be a crucial tool, opening the door to the theory of functions and the law of large numbers
applications. Numerous authors, including those who investigated the Euler totient matrix operator, have
studied the strategy for building new sequence spaces that are specified as the domain of matrix
operators. Recently, the Jordan totient function Tr. generalised the Euler totient function ¢. In the context
of neutrosophic Norm spaces, we establish some sequence spaces, specifically cI 0(J,G,H)(Mr), cl
(J,G,H)(Mr), LI oo(J,G,H)(Mr) and £oo(J,G,H)(Mr) as a domain of the triangular Jordan totient matrix
operator, and investigate the ideal convergence of these sequences. These concepts serve as an
introduction to a new sort of convergence that Fast and Steinhaus presented as more general than normal
convergence and statistical convergence. According to Kostyrko et al., this form is known as ideal
convergence. In order to arrive at a finite limit, the Jordan totient operator, an infinite matrix operator, is
used. We also construct a number of inclusion connections between the spaces as we explain various
topological and algebraic properties.

The Jordan totient operator, an infinite matrix operator, is used to accomplish the task of reaching a finite
limit. As we discuss various topological and algebraic features, we also create several inclusion relations
between the spaces.

Keywords Jordan I-convergence, Compactness, Completeness, Hausdorff, Neutrosophic Sets
- J

1. Introduction

Fast[1] and Schoenberg [2] were the first to independently introduce the idea of statistical convergence.
Salat et al. [3] established the concept of I-convergence, a statistical convergence generality. Later, the
concept of statistical convergence for double sequences was independently developed by Edely and
Mursaleen [4] and Tripathy[5], and for fuzzy numbers by Mursaleen and Saves [6]. In connection with
this, there are two very distinct types of convergence for double sequences, namely I and [-convergence
[7].

Converged triple sequences were introduced by Gurdal, Sahiner, and Duden [8] in 2007. Numerous

Mathematics and Statistics ( Volume No. - 13, Issue - 2, May - August 2025) Page No.24



ISSN: 2332-2071 (Print)
ISSN: 2332-2144 (Online)

authors have further explored this idea; see [9, 10, 11]. The I-convergence of triple sequences in
probabilistic normed spaces was a concept used by Tripathy and Goswami[12].

A generalization of fuzzy set theory, intuitionistic fuzzy set theory was first proposed by Atanassov[13]
in 1986. Fuzzy set theory is a powerful tool for modeling uncertainty and vagueness because it assigns
the degree of membership to the components so that distinct individuals can be identified in a given set.
The notion of fuzzy sets has curiously evolved into the present standard for young scientists or
researchers, according to a large body of research that has lately arisen in the scientific discipline. The

idea of fuzzy topology has become a highly important tool for many writers’ works.

After some time, Smarandache [14], by introducing an inter mediate membership function, introduced
the idea of Neutrosophic Sets [NS], which is a unique sort of notation for classical set theory. Thisset
isaformal settingdesignedto gaugethe veracity ,ambiguity,and falsity of statements .Converged triple
sequences were introduced byGurdal,Sahiner, andDudenin2007. Numerous authors have further
explored this idea . The concept of triple sequences I-convergent in probabilistic normed spaces is
familiar toTripathy and Goswami. Tripathy and Shiner examined the [-convergence qualities in triple
sequence spaces and presented some in sightful findings.

The Jordan totient matrix operator, represented by Mr, is one such definite matrix operator. It was first

described in [15] via the Jordan totient Tr function, whose domain and co domain are N.

1 < fi < 3. It has the following definition: T,(3) =
i 1

1L (1- )

Since ¥) > 1 is the prime decomposition of 3,

£ = p?',pgz,--- :pg"‘. Consequently, the definition of the
Jordan totient matrix operator M" = (pi, ) is as follows:

T(k)
,o;;f{ o TEP (1.1)

0 otherwise,

and its inverse (M")~! is given by

3
()
T.(3)
0 otherwise,

M)~ = R Af R, (12)

where the Mobius function ¥ is represented by the expression:

0 if 2[5 for a few prime p,
\ 1 if =1,
J0) = n
(=)™ if 3= H nr, where a4 s are vary.
k=1
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Later, using the operator to look at sequence spaces, Khan,

Ilkhan, and Kara ([I6], [17], and [I8], respectively) pre-
sented some fascinating results. Also, we discussed Statisti-

cal A™-Convergence [[19] and Lacunary 3-Statistical Conver-
gence [20] in Neutrosophic Normed Spaces. In this article, we
construct sequence spaces, investigate the ideal convergence of
these sequences, offer strong reasons against them, and analyze
the algebraic and topological properties of these spaces within
the framework of Neutrosophic Normed Spaces. Consider an
open ball with a radius of » > 0, a center of 1, and a fuzziness
parameter of ¢ € (0, 1).

2 Preliminaries
For the two sequence spaces &, R and an non finite matrix

P = (31 ). the P transform of D = (D ) provided by P =

(e) F(ad,) = F (m ﬁ) for every o 0,
(f) F(e,ow) « F(g,3) < F(@+ 4,00 +3),
(8) $(a,%) : (0,00) — [0, 1] is continuous,
(h) Jim §(o.5) =1and lim §(2,%) =0,
(i) 6(x, %) < 1,

() 6(a.%) = 0 ifand only if & = 0,

(k) Glak. o) =€ (:13 %)ﬁ)r each o % 0,
(1) (x,o)®6(4y,3) > 6@ +14,w+3),
(m)

€&, ) : (0,00) — [0, 1] is continuous,

(n) lim §(&,55) = 0and lim G(&, ) = 1,
w—

TIT—0C

(0) #(x,w7) <1,

(p) H(&,%) = 0ifand only if & = 0,

(q) #(ax, o) =% (oc %)ﬁ)r each o # 0,
(r) #(&,)06(4,3) > H(x + 4,0 +3)
(s) H(2,c0) : (0,00) — [0, 1] is continuous,

(1) lim #(x,ww) =0 and

lim % (&, w) = 1.
w—roe o—0

Definition 2.4 [20] Let (3, 5,6, %, %,©,0) be an NNS. A
sequence & = (@) is known as .J-convergent to ¢ €  in

regard to Neutrosophic Norms(NN) (F.6, %), if every € > ()
and ©o > (), the set

Flar —lww)<1—¢or
G(xp —lw) > éand
H(xy — o) = ¢

€.g.

(i) WeF and V> U implying V€ .
F(3) = {H C I : H* € T} is the filter connected to the ideal
J. Consider J as an admissible ideal in N.

Definition 2.3 [20] The 7-tuple (5, %,%6,%,%,©,0) is
known as NN S if 3 is a linear space, * is a continuous t-norm,
@ and  are continuous t-conorm, ¥,G and ¥ are fuzzy sets
on I x (0, 0o) fulfils the coming after conditions:

For every one &,1 € Sand 3, <0 > (;

(a) 0 < F(&,0) <L0<6(2, ) SLOSH(e,w) <1,
(b) ¥(x.w)+G(x,w)+H(x, o) <3,

(c) F(@.o) >0,

(d) J(x.w) = 1lifand onlyifx =0,

3 Main results

For the purposes of this section, we’ll assume that the ideal
I is a non-trivial admissible ideal of a subset of N. Following
sequence spaces are arranged as follows:

Cf},‘f;,?f) (M)
neN:forafewl € C,
FM () — 1. 5) <1 ¢2or
G\ (n) — 1, %) > ¢and
H M (p) —1,20) > ¢

(B.D

f—’(‘;(j:.c,m(m{r)
FM,(p) —l,z0) < 1—¢or
= C(M! (p) —1,zo) > éand
H (M (p) — 1,20) > ¢

f-;o(g;.f:,m(Mr)

el V., (32

there exists e € (0,1),
FM,(p) ) <1 —¢or
€M} (n),w) > ¢and

#(O(), ) > &
Coo(g,9.90) (M)
n € N: there exists ¢ € (0,1),
_ JOM(n) @) > 1200 |,
B G(M),(p), ) < éand
% (M (p), ) < ¢

(3.3)

(3.4)

With regard to the fuzziness parameter ¢ € (0, 1), with a center
at g and a radius of r > 0, we offer the definitions of the open
ball and closed ball as follows:

B, (r, ) (M)

FOM(n) =M (¢),r) <1 —¢or
=4 €M, (n) =M (p),r) > &and
#H (M5, (n) — M7 (p),7) = ¢

B,,(r, ) (M)

cl (35
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The notation J(3 ¢ 9y — limay = [ will be used to indicate
the ideal convergence of the sequence in the article (&) tol in

regard to the NN (§.6.%).

Definition 2.5 [20] Let (3, F,6,%,%,®,0) be an NNS. A
sequence & = (&) is known as .F-Cauchy sequence in regard
to (§,6,%), if every € > 0 and to > (), there exists p =
n(e) € N like that the set

Flag —ady,w)<1—¢or
g(d’.‘.k - :i‘;_‘»\f:ﬁ') 2 ¢ and
H(dp —dy.0) = ¢

€.

Definition 2.6 Let (3,%,6,%,%,©,0) be an NNS. Then
(3, 7.6, %, %,0,Q) is known as :;Umpl{f{ if each Cauchy se-
quence is convergent in regard to the NN (F,6,%).

sets:

7o) <1 o
‘Q(M’ (m) = no. 21) > €
( n(n) =M0: 375 )
( w1 =10, 3 )
(M, (1) — o, %)4
(M () o0, 55 ) < @
j(MT(X)— ) <1-éor
© (ML00 — xo, ) =
e (W5, (x) —xo,%)zé
7 (M0 = xo, o) > 1= eor
© (M5 (x) — X0, 557) < tand
% (M0 — X0 557) <@

> e,

B
I

> € (1),

e,

€ §(I),

The set € = A°NB being a void set lies in F(I), so consider
n € 6, then

F (MG, (yn + Ix) — (yno + Ixo), o)

> 7 (000 - m. 5 ) o7 (100 - 1. )
roy S ") — v 2

= 3 (Mn(”) o, 2'7') *3 (Mn(x) X0, 2|I|)

SA—x(l—¢)=1-¢

= F (ML (yn +Ix) — (ymo + Ixo),
G (M, (vn + Ix) — (ymo + Ixo), @)

w)>1-¢

. = ) &
< (”/ML(TI) — M0, 5) ©%E (IM-L(X) - Ixo, 5)

= (3600 -5 ) 9% (300~ x0.

<it®e=¢
=G (M, (v +Ix) -
7 (M, (yn+ Ix) —

(10 + Ixo),20) < ¢

(vno + Ixo), @)

F(M, () — M (), 7) < 1 — éor
={ G(M,(n)—M(p),r)>¢and 3 €I (3.6)
# (M (p) = My ().7) > &
Theorem 3.1 As of the Spaces (’lfl’(?s%’,‘»‘f‘f) M) and

(:{5 ©,9¢)(M") are linear spaces.

Proof:

The space (0(5 ©.9) (M")’ linearity is demonstrated. On the
basis of comparisons to ¢!
tainty.

Given arbitrary sequences 17 = (mx),x = (x&) €
¢(y.5.90)(M") indicate that there is 70, xo € C so that (i)
and (x.) I-converge to 19 and yq, respectively.

Forzz > 0,¢ € (0,1) and «, 1 € R, think about the following

(75 %)(MT‘) may be drawn with cer-

Yo + Ixo.
Thus, (v + Ixx) € (:f} © w)(Mr)-

A
Therefore, the linear space is Ci3..%)

Theorem 3.2 The inclusion relation
(:f)(}‘,.g!m(MT) C (:fj,?;,gf)(Mr) C r:_io(giig‘w)(Mr) holds.

o).

Proof:
The inclusion of g (M) 0 cfp g gy (M) is fairly ob-
vious.

: : i r A T
We provide evidence for (,(}__.51%)(3\1 ) C (,OC_(}‘%,!%){M ).
Consider the sequence p = (pi) € ci’}_‘g‘m(MT').
After it, there is [ € 6 like that o
13 w5)(M") — lim(z,) = [, and for every ¢ € (0,1) and
zo > 0, the set

F(Mi(p)—1.Z) >1—¢or

A=<¢ G (p)-1,%) < ¢and € F(I).
*(M(n) —1,F) <t

Choose ¥ (1,%) = p.6(1,5) =q and #(1.5) = s
where p,q,5 € (0,1),z0 > 0 and ¢ € (0,1), there exist
e d,e € (0,1) like that (1 —¢)xp > 1 —c,é®q < d and
eGs < e.

For this reason n € 3, there are

F M (), @) = F (M, (p) =1 +1,%0)

3 (rm-1.2) 01 (1)

>(1—¢&x*xp>1-—cg¢,

% (M (p). ) = 6 O, (1) 1+ 1, %)

w w0

<G (M I, —=10% |l —

<s(atm -1 )es(13)
<(1-8oq<d,

H (M (n), o) =% (M, (n) =1 +1,%0)

o o-1£) o .4

<(1-¢)0s <e.

Choose i = max{e, d, e}, there are
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<% (TM;(U) Yo, —) O (IMI;(X) — I'xo,

2
= (30 -

% e T
"2y |)° ( n(x) X“'zm)
<ede=¢

= #H (MG, (yn + Ix) = (vno + Ixo), @) <€

Then, we draw a conclusion
F (M5 (yn + Ix) — (yn0 + Ixo), @) > 1 — ¢or
6 C { G (Mn('erIX) (ym0 + Ix0), %) < éand } :
H (VG (v + Ix) = (o + Ixo), @) < €

By utilising the attributes of §(7), we have

F (M (yn+ Ix) — (yno + Ix0),%9) > 1 —¢or
{ G (M (yn + Ix) — (ymo + Ix0), o) < cand } e 5(1),

H (MG.(yn + Ix) — (ymo + Ixo), @) < ¢
which implies that the sequence (yn + Ix;)I-converges to

Example 3.4 Assume that (R, | -||) is the normed space outfit-
ted with the NN (F,6, %) as previously mentioned. Regarding
the sequence (2;) = sin (%)

Then, (ni) € Céc-[}."ﬁ,?f) (M) r:f‘?:ag'w) (M").

Theorem 3.5 Each open ball has centre at v and has positive
radius v in regard to parameter of fuzziness € lving between 0
and 1, i.e., ?Bf;.(r, €)(M") is an unclosed set in (:‘(F}{‘&W)(MT).

Proof:
Consider the open ball with ¢ as a center and a positive  as a
radius with the parameter of fuzziness ¢ lies between 0 and 1,

Bl (r,&) (M)
FOG,(v) = ( ),r) < 1—¢or
= G(MI (¢) — (T) r) > eand el
(NG, (1) — M (), 7) > ¢
fBi (r,e)(M})
O () — ME(T),1) > 1 - cor
— G(ML (¢) — M (T),r) < éand eF{).
(NG, () — M(T),7) < &

Think about the element T =
Then its matching set

(Tr) € BL(r,&)(M).

F(OVG, () — (T) )>1—¢or
G(M,, () — M (T),r) < eand € §(1).
MG () — Mi(T).r) < &
For ?(M?L(’t.‘ﬁ)*ML(T) ) > 1=¢ G, (¢) =M (T),r) <
¢ and FH (ML () — ML(T),r) < & there exists ry lying

between 0 and r like that

FMG () = MG (T),r0) > 1 =&,
G(M, (1) = M, (). 1) < €and
(M () — MZ(T), 7o) < &

F (M, (n) — L) > 1~ fuor
G (M7 (n) — I,&) < hoand
% (M, (p) —1.%0) < o

=1 = (nr) € g0 M.

€ 3(1)

The inclusion relation’s inverse is not true. To prove our point,
we offer the coming after examples.

Example 3.3 Let the Normed space (R, |-||) equipped with
supremum norm, v * p = min{»,p},+ ©np = max{»,p}
and vOp = max{#,p} for every p,+ € (0,1). Consider
the norms (§,6,%) on 3% x (0,00) as follows: J(p.tw) =
E Snw) = F4 ad #(pw) = 12l
(R, 7,6, %,%,0,0) is then a standard NN 8. Regarding to
the sequence (p;.) = {k + pﬂ} where po € R—{0}. The se-

quence (2. distinctly lying in (J((y .9) (M) c{)(g‘,g_l?f)(j\f[‘f‘).
Therefore,

FVC(¥) — M (¢).7)

> FMG, () = M (T), 7o) * E(M:L('T‘) = M, (@), 1 — o)

={ne¢ N (M () — (q’) ) > 1 — ¢} e F(I),

SOG) - M6

< gV (U) M (T).rg) © G (T) — M (o), 7 — o)
<(l—¢g)® (1—61)‘((1—50)’\(1—62)‘(s<€

= {neN:EM,(¢¥) — M (¢).7) < &} € F(I),

and correspondingly

9 (M (1) = M (&), 7)
< (N, () — ML(T), r) 0TV (T) — M (). — 7o)
S(1—¢0)0(l—2) < (1—2)0(1l—e2) < s <2
= {n e N:H (M) - My(9),7) < &} € §(T)

Hence, the set
FOVT () — M (@), r) > 1 — ¢or

BN, (1) — M7, (6).r) < ¢and
(M, (4) — M (), ) < &

= Blp(r — 1o, 1 — &)(M]) C By (r, &) (M),

€ §(I)

Remark 3.6 The spaces (:é(j‘grw)(Mr) and cf}ﬁﬁ.‘?’f)(mr)
are NNS inregardto NN (F,6,%).

Remark 3.7 7/, .., (M) = {Ql C cly gy (M) - for each
(v) € A, a thing exists v > 0 and ¢ € (0,1) like
that B, (r,&) (M) C Ql}
tablishes a topology in the space of sequences 'r({)r‘r ?;.W)(MT)'
The group is cited by

W o=

Following that T(‘IJ‘,,E!W)(MT) es-

B = {%fy(r,e) VRS (:f}‘?;!m(Mr),T > 0ande € (0, 1)}

a foundation for the topology ! )(M ) on the space

(7. 6.%
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Setting ¢y = F(M[(v) — M} (T),rg) we get &g > 1 — ¢
which further proves the element’s existence s € (0,1) like
thateg > 1 — s> 1 —¢.

For a certain ¢y > 1 — s, we can locate é1,¢é2,65 € (0,1)
like that ég % ¢é; > 1 — s,(1 — &) ©® (1 —é) < s and
(1 —20)0(1—&3) < s.

Assume ¢; = max{é;, &, é3}.

Consider the open ball BA. (1 — 7q, 1 — &) (M)

The restraint of B4 (r—ro, L —&4)(My,) in B, (r, &) (M},) will
provide the outcome we want.

Let ¢p = (¢y) € BA (r — 10,1 —&)(M},), then
FOMI(T) = MI (), r — 1) > €401
CM(T) =M (¢),r—rg) <1l —¢€rand » € F(I).
M (T)Y =My (¢),r —ro) <1—¢&4
Then for every ¢ > ¢, there exist ¢4, ¢5,¢6 € (0,1) like
that %.4 * éi > én,(l - %r,) © (1 - 65) < (]_ - %0) and

(1—¢)0(1 —&) < (1—&).

Assigning &7 = max{&4, ¢5, ¢g }, consider the open balls
BL(1-¢7,%5) (M) and BL (1 —¢7,%) (M) centered at
© and ¢ respectively.

We demonstrate that

%i( — &7, = )(M ﬂ£B¢,(1—€7 2)(M’) F

Ideally,
= () € BL(1-&7,5) (M) NBL (1 - &7, 5) (M,).
For the set, next {n € N} € §(I), we have
= FMG () = M (¢),7)
> 7 (Mole) = Mo (@), ) * 7 (M (0) - MG(9). 2 )
(3.7)

> €7 %7 > ey ke3> &g > €1

¢z = G(M;, () = M, (), 7)
<% (M:;{fp) M, (), 2) ©% (Ml;(tb) = M..(9), %)
(3.8)
Cer e <€ eEg <€ > e
&3 = % (M), (@) — M},(4),7)

< 9 (M, () — M (), 7 ) 0% (M) - M (6), )
(3.9)

< 67067 < 6506 < &y > &3

Equation (3.7) brings about contradiction.
Therefore,

BL(1-&,5) (M )ﬂﬂS"(l—@ M) =g.
Hence, the space ¢! (7.6.9) (M) is a Hausdorff space.

4 Jordan Neutrosophic Ideal Conver-
gence

Theorem 4.1 If a sequence 1 = (1) € £ is Jordan Neutro-
sophic Ideal Convergent (FN.J€) then the (g « 3\ (M, )-limit

cly 000

Theorem 3.8 The spaces Cé(}.‘.e.?f)(Mr) and f:{J,?;‘%)(fN[")
are Hausdorff spaces. ' '

Proof:

Letp = (pr) and & = (di) € iy 4.9 (M) such that o # o.
Then every n € N and r > 0, suggests

0< FOVG (o) =M (), r) < 1
0 < G(M () = MI(¢),7) < 1and
0 < F V() — M (), ) < 1.

Puting &4 = JOG(e) - W07 ia = BOCL) —
Mn((lb) %(ML(‘I‘Q) - M:':((.b)tf) and €
max{él,l - EQ, 1-— ¢}

1—%1or

€ 3(I)

Then G° MR # . Taking n € &° N R°, we have

F(ly —l2,%9)
z;(M:;w)—z L)*y( ) 1y, 2

(1—&)>(1—-¢),

Z)es(ww

)
)
2

¢ € (0,1) being arbitrary; I; = l2. That is Iy 5 gy (M, )-limit
is individual.

> {l — (\:1) *
G(ly — Iy, )
w

< (3w -1 b
< € (€ < cand

H (1, — lo, )

<%(M( -1, )wf( P,

<& < ¢

Theorem 4.2 A sequence of () € Eis FNFEB in
regard to NN(F,G, %) if it is Jordan Neutrosophic ldeal
Cauchy (N .F€w) in relation to the same norms.

Proof:
Let ¢y = () € £ be JN.F€6 in regard to NN (F, 6, %) like
that

L5 w)(M},) — lim(¢x) = [ and there exists ¢; € (0, 1) like
that
(1 7@’.1)*(17@’.1) >1—-¢&&1@eé; <é and &{é; <¢toa

certain ¢ € (0,1).
Thus every @ > 0,

FM () — 1, @ )<17€10r
E(M7(¢) — 1y,0) > & and
O () — 1) 2 &

T = el

Mathematics and Statistics ( Volume No. - 13, Issue - 2, May - August 2025)

Page No.29



ISSN: 2332-2071 (Print)
ISSN: 2332-2144 (Online)

is unique.

Proof:

Assuming that the FN.F€ sequence 1 (%%) has non-
identical ideal limits {1 and l>. There exists a ¢&; € (0, 1) with
the given € € (0, 1) like that

(1—é)*(l—¢€)>1—¢¢ ©é& < ¢ and é0€é < &
Hence, the sets
F (M (Y) = 1y, .'%) <1l—¢&or
S = %(M:’l(@b)—h,%] > ¢1and el
H (M, () =1, 5) =&
F (M2 (0) — 1, .‘%) >1—¢&or
G = K (M; (1) — 1, %] < ¢1and e§(I
H (M, () 1, F) <&
H (M () = M (9), %) = &
On the contrary, let (M7, (¢/) — 1),%e) > 1 — & Then
-2 > §(M () - My (), &)

w

2)

> g (M;(q‘;) 1, %) * J (Mzw) -1,

S(1—e)x(1—¢)>(1-0),

this is incongruous.
Likewise, think about

GCMG () = Mi(y), @) = &H (M (¢) — Mi(v), @) > ¢
such that )
G (M (¢v) —1,F) =2 ¢ and 7 (ML (v) — 1, %) > &y

n@W) - 13) <&,
[, %) < ¢1. Hence

Contrarily, let 6 (M
7 (M, (¢)

€ < GM,(¥) = Mi(¢), @)

<% (M;(’LI-D) —1, E) ©%

< @ <8
€< H(NM(Y) -

(zn) -1.3)

FM () —li,eo) >1—¢&or
pe = G(M] () — 11,70) < € and € §(I)
(M (1) — b, ) < &
For n € °B°,
FOM () — lLi,wo) > 1 — &,
GOV (4) — ) < & and

H (MG, () — lh,to) < &
For a certain k € 3¢, we may state

FOV () — Mp(¢),20) <1 —¢or

G(M,(v) — M (1), oo) > éand
(M, (v) — M (v), 7) > ¢

@:

Letn € @ = F(M],(v) — )<1l—¢ or

GV (¥) = Mi(y),

Simulteneously,

M}b(u)
w) > ¢ and

& < TV (1) — MG (1), )
<9 (M;;(w) -1 %) 0%t (M:;(w) -1 %)
< 6108 < €.

This resulted in conflict.
Therefore, B € §(/) and hence, v = (v;,) is FN.F6.

Theorem 4.3 Consider NNS fj € 7“) (M™) and

ij (M ) be the topology on ((3 FW)(M Let
(v;) = (f,)k)‘?:-l be a sequence in "(J‘W-W)(Mr)'
The sequence ; — ¢ as j — oo if and only if
FMG (1) = MG (1), @) = LG, (¢;) = My (¥), @) = 0
and F (M, (v;) — M, (), 7) = 0asn — oo.

Proof:

Let ¢#; — 1 as j tends to oc. Fix a specific v > 0 and € €

(0. 1), there exists the natural number n. € N like that (1;) €
I T 4 -+

B, (r, €)(M,) every j = k.

Then,

T / t:T’r > ™ f ﬁ- . . . f “
<H (Mn(w) -1 3) O (Mk(-e.-:) L 5) F(ML () — M;L(w) r)<1—¢or
e S = B0 M), 1) > e
<adh <& (M, (1) = M (0),7) > &
it also contradicts itself. or equivalentl
Therefore, n € @, we have 4 ¥
FOMIL () — 1ew) < 1— ¢, 6MI(y) — 1,%5) > ¢ and e o .
F (M (1) — 1, 25) > ¢, may suggest n € P. . E(M”E.I’)J,) N M"E,?")),' r) > 1\_ cor
Therefore, @ C P and @ € /. S = GO, (1) — My, (v), r) < €and €si)
As a result, the sequence ¢) = (1) is N .F€« in regard to H (M (95) — M, (¢),r) < ¢
norms (},Ef?f):. .- ‘ For {n € N} C &,
Con%e;;ly, lst 'g-)t: J(\}q};?_@becjﬂf%@tlln rfhgard.tokthe %0?1]1;15 FOMI () — ML (), 1) > 1 — ¢
[(fif[ , %) and not ¥ . Consequently, there is & € N like =1 - FM () — ML(),7) < &,
GV, (1) — M3, (6).7) < ¢ and
F(OME () — M;b(u) )< 1-—¢or H (M, (95) — M (¥),r) <€
9 — G(M (v) — w) > ¢and cr Therefore; fqr n — 3:3 .
G0 () M0 2 > L 2 (Y) ~ Ma9),7) = 0,
SOT(%) ~M4()r) 0
and %(M:L(’!i;?) Mn(!i ) _} 0
This implies that
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FMI(¢) —1lew)>1—¢or
B = G(M, (u)—fm)<fand el
H (N () —lw) < ¢
S 1> W) - M), )

> 5 (3w 1.5 ) w7 () -1 5)

>(1—¢)*(l—¢)>1—¢€and
¢ < GV (¥) - ME(1), &)
w7
2)

<% (M'( v) — 1, %) ©% (Mi:;(w) -1,
< €1 @& < E,
Think about the ideal I produced by the set

{n € N : n < k}, it implies that the set’s family of sets con-
tains {n € N : n > k} which relates to F(I). Therefore,

FOMG (v5) —
GOV, (1) —
H NG (¢5) —

= () € B, (r.2)(

M w) >1—¢or
n(u) @) < ¢and
MG (), o) <€

M), for everyn > k.

€F()

Thus, ¥; = as j — oc.

Theorem 4.4 Let ) = (1,) € ¢!
Tig.m,90 (M7)
_—

(7.5, %)(M"). Then for anyone

l €6,y Lif for every ¢ € (0,1) and w > 0,
positive integers exist N = N (1, €, w) like that

(M"‘ (v) — 1, w) >1—¢or

G (My(¢) =1, %) < eand € F(1).
H (M () -1, Z) <¢

Proof:
Ii3,5.90) (M7)

Suppose 1, —————— [ for anyone [ € 6.

For given that € € (0, 1), there exists a decimal r € (0, 1) like
that (1 —€)x (1 —¢) > 1—r,e@e <r with éQe <.
Iig.5,9)(M7)
L

Since ), I, for every o > 0,
(Mn U) 51‘123)5 —¢or
A= @( n() =1 %) >¢éand 5 €I
(V) 1 5) > ¢
which implies that
F (M) =1,5) >1—¢or
A=¢ (M (¢) 1, F) <eand 5 €F(I)
7 (M () — L) <&

On the other hand, let us pick & € A°,

Then
J(My(¢)—1,%) >1-¢or
G (M7 () —1,%) < ¢and
¥ (M) —1.5) <¢
We demonstrate that a non negative integer exists N
N (4, €, 7o) like that

FOU () — M0 (), ) — 1
G(MT (1) — M7 (4f),r) — 0 and
(MG () — M7 (), 1) = Oasn — oc.

On the other hand, 1magme for every @ > 0,

FM () = M3, (¢), ) = 1
G(M, () = My, (¢),20) = 0 and
(M, (1) — M (), o) — 0 as n tends to oo.

Then every € € (0, 1), a thing exists the natural number & € N
like that

L— FOG(65) — M (), %) < &,

GG, (1) — My, (1), %) < ¢ and

(M () — Mu(z,;) w) < ¢ foreveryn > k
= F(ML(y;) — {u) )>1—¢,

G (1) — My, (1), ) < ¢ and
%(M;('gi'j) — M7 (1)), o) < & foreachn > k.

This is incongruous. Also,

GO () — My (1), %) > rand (W, () - 1,%) < &
Particularly, €(M] (v) — |, @) < &
Therefore,
r < GM,(¥) = M (). %)

% (M;(w) —1

<eE@e<T,

2)es (m-15)

which again is in conflict. Similarly,

W (N () — My (), ) > rand O () — 1,3) < ¢
Particularly, % (M, () — I, o) < &
Therefore,

r < (ML (%) — My (v), @)

<o (3w - 1.5 ) o (3 - 1.5
< eQe <,
Therefore, B C A andsince Ae T — PRel

Definition 4.5 The void set & C (:fjg‘giw)(?\/[") is compact if
each open cover of S specified by the open set of T(‘},kgw) (M)
has a non infinite subcover.

Theorem 4.6 Each non infinite subset © of (:{5‘,&%)(3\’["‘) is
compact. '

Proof:
Let & {¢1, 92,3, .., Un} be the finite subset of
("f;f ‘S.W)(MT)- Forr>0and0 < ¢ < 1.

Let {931. (r, &)(MT)

Following that & C ULE(‘:} (
Now foreach ¢; € 6,1 =1, 2 3.

UL € U:,.‘l'ié-‘i %LL(H %)(MIE)'

Y € G} be an open cover of &.

)(M' ).
. n, we have
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F(M (2) = My (v), @) <1 —ror
L= G(MZ () — M«r w) >r el
%( n(.) Mr‘\‘(t*’) > r

We’ll demonstrate that 8 C A. Contrarily, let P € A, that is,
there exists n € P like that n not in A.

Then F (M, (/) — M7 (¢)),27) < 1 —rand

F (M5 () — 1, ““)>1—€
Particularly, ¥ (M; () — 1, %)
Therefore, we have

L—r > FOMG () = My (), %)

> 7 (300 - 1.2 )+ (M50) -

>(1—8)x(1—8)>1—7r

>1-—¢

@
L=
2)

(1) € B (5,8) (M),

Therefore, the set

g (Mn UJ M;L(U);%) >1 — éor
76’ (MI.(%) —MI(4), ) < &

A finite subcover exists
{BL, (5,0 V) vi € Gand i = 1,2,3,...
is compact like that & C | J | BL (%,¢) (M)
Let (077 ) be a subsequence of (q,J ).

Then (yir) € ULy By, (5.¢) (M),

, m} since &

implies (yir) €

‘Bi %6) (M), for some ¢); € &.
Therefore, the set
F (M, (497) = M5 (), 5) > 1 — ¢or
V= € (M]:‘L(w?p.l _ M (q.'}t), 1< ¢and e F(I).
W (MG, (0) = M (1), 5) <

Forne ANV,
FOG(77) = MG (). 7)
> 7 (MW7) = M) 5) # F (M (05) = M (). 7

+3 (M) - 2Gw). 1)

>(1—€)x(1—€&)=*(1—¢€)=(1-2¢).

Also

GO, (47r) — M (1), 7)
<G (M)~ M (), 5 ) ©9 (M) — M (6). ¢ )
( Mn(u) 5

Simultaneously,

% (M (477) — M (1), 7)

< 9 (M) = M), 1) 0% (M (1) — M), 5 )

That sﬁégests 1)1,
{1,2,3,...,n}.
Following that {7, (1, &)(M;,)

infinite subcover of &.

€ ‘38,{-,}(?',%)(3\([;) for anyone j €

;f;:1,2,3_.__,n}isanon

Theorem 4.7 The set & C (_f{ 7 w)(MT) is compact if each
sequence in © has a convergent subsequence.

Proof:
A compact subset of Cfg.‘s;,?f)(Mr) would be &, assuming that

let (U;i) = (¢;)7= be a sequence in &.

Given0 < ¢ < landr > 0,

let {931 (5.8) (M) i ¢ = (vn) € 6} be an open cover of S.
This suggests, (V) € Uyea {93[ (£,8) (M, )}

Next, there are some 1) = (1;;) € & such that

hand, let {%" (5.¢) M;)} be an open cover of & => & C
Usee By (5.¢) OM,).

Therefore the set

F (MG (v5) — (U) )>1—¢cor
GIMT (1)) — MZ (1), r) < eand b € F(I).
#H (NG () — ML(’!L')J’) <€

Due to & not being compact, there exists a non infinite sub-

cover {1, (r OO i €6,i=1,2.3...,m} like that
& Uy, ce Bl (1, €)(M,), it suggests the sct

F(VG(09) = 2, (1)) > 1~ éor
G, (¥97) — M, (1), ) < eand
7 (M, (49r) — M, (), 7) < &

= for anyone ¢ € (0, 1) and a positive

r, (7%) ¢ BL(r,o).

Hence, (¢/#) - z. This is incongruous.

Thus, & is compact.

Theorem 4.8 Consider the N NS (:fg’?;w)(M"). Choose a

€) < (1—¢8)*(1—¢),

Then for some one 1) = (Y1) €

B, (5,8) (M) € B (r, &) (M),

¢ 3(1)

positive r and 0 < &,¢" < 1 like that (1—
eme < ¢ and Qe < ¢
("(15,‘61%)(%')*
Proof:

Let g = (qx) € B (5,¢) (M) and Bl (£,¢) (M
open ball which has centre at ¢ and has radius ¢.

Thus, B, (5.¢) (M) N B! (5, )(M ) £ F.
Suppose = (i) € BY (5,¢) (M) NBL (5,¢) (M];).
The sets follow

) be an

F(Mi(q) = M(p),5) >1—¢ or
A= € (M}, (q) — M, (¢), 5) < & and S(I),
7 (ML(Q) -Mi(p),5) <&
F (M, (v) - (w) 5)>1-¢or
V=1{ (M) - (9») £) < ¢ and 3(1)
(M, () =M (), 5) < &
Consider n € AN V. Then
FOVG, (¢) — MG (g).7)

> 7 (M (0) = M0, ) + 7 (Mila) ~ Mile), )

Mathematics and Statistics ( Volume No. - 13, Issue - 2, May - August 2025)

Page No.32



ISSN: 2332-2071 (Print)
ISSN: 2332-2144 (Online)

0% (M () -
< eQeQe = &

ML), 3)

Take € = f—ll Then

1
(u),r) = lim1--=1,

n—roc T

lim F (M (") — M,
TE—+ 00

mn

i : 1
lim G(N (7)) — MI (¢),r) = lim — = Dand
=00 n—oc 1

o " 1
lim Z (M, () — M (¢),r) = lim — = 0.
=00 =00 1l

Thus by theorem (@.3), ¢//» — 1, as p — oc.

In contrast, imagine (1/7r) be the subsequence of a sequence
(;) in & like that (197) — 1 in &.

Let & not be a compact subset of ¢, ., ..,(M"). On the other

Thus, B, (§,2) (M7) € B, (5,%) (OM,).

Theorem 4.9 Let o) = () € £ If a sequence exists, 1
() € ij,‘g,wf)(MT') such that M7 () = M, (v') for every n
relative to I, then y) € c:fj“g%)(fM").

Proof:

Suppose M, () = M, (¢') for every n relative to 1.
Following that {n € N : M/, (u # M ()} e L
This implies {n € N : M, ( (1) )} € F(I).

Whereas, because n € {s’(f) for every w > 0,
F(ML(¥) - M (¢), %) =1,

€ (M7, () — MJ(¥'), 2)_0 and

% (M, () = M, (¢), 5) = 0.

Since (’Uk) c {‘(g,f;_ge)(M"'),
let Iy 6.9y (M") — lim(yy) = L.

Then, each ¢ € (0,1) and @ > 0,
F (M (v ’)—l,%}>1—éor
A= ‘@(M;L(.) 1,2) < ¢and € F(I).
*(ML(v) -1 F) <

Think about the set

F(MI () —1,20) >1—éor
€ (M” (1) — I, o) < ¢and
(M, (¢) — L) < ¢

V:

We show that A C V. So for n € A, we have
FOU () — 1)
=¥ (MI;(@"‘J) = M%), %) « § (M;(r@.«;) .
>le(l-¢)=1-¢
GOV (¥) —1.w)
G (M:;(w) — M (),

<06
%(Mn(!@) o I!f‘- T,TJ)

€ = ¢and

>(1-8x(1-8>@1-¢),

S(M,(¢) — Mi.(g),r
% (M5 () - My
< eme < & and
(M, () — M3 (q),
% (M () -
< eQe < ¢
Therefore, the set

F (VG (¥)
TN ()
7 (M5 (¥)

= q = (@) € By,

r

T)
M (), £) 0% (M (q) — M (),

- M7 (q),7
—MI(g),r) < ¢ and

- M:(q),

)

(M (0) - M3 (),

)>1—¢or
€F(I)
r) < ¢

(r, &) (M)

Since T/ — 1) as j — oo, by Theorem ,

FOMG(T9) — ML(’T)
and F(MV0, (M) = ML (T),r
forevery o > Oasn — 00 .
Thus, n € A,

FOVC (¢) —
> lim F(M(T7)
>1s(l—8)=1-¢
SO0 () - M
< lim B(ML(T) =M

TL—F 00

<0®é=¢éand

(W)
< hm F€(M%(T7) —
< 0(}6 = ¢.

A particular k£ € N, take @0 =

FOMC(¥) = M (T),

r) — 1, 6(M(T7)

=M (T),7) =0

) =0

MI(T), & + 1)
= M(T), 29) x FOMG(T7) —

M, (), 7)

My (T). % +7)
(T), i

O (MG (T7) = M (), 7)

— M5(T), e‘zw)
M (T),

%) 0T (MG, (T) — My, (¢),7)

1
. Then

r)

1
= lim ¥ (M;(U) =M (T),r+ —) >1—¢,
k—oa ' k

GOV (1) — ME(T), )

= lim % (M;('«) M(T), 7 + %) < tand

H (M, (1) = M, (T),7)

. . ” N 1 .
= k]HIolc% (an(L‘-}) =M (T),r+ E) < €&
{ FOU () — MG, (T), ) > 1 éor }
= G(M () — M (T),7) < eand e g
H(ME () = MG (T),r) <&

= T € Bj,[r,¢](M"). Therefore, B, [r,é](M") is a closed

set.
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<% (sz.(z.-a) - M), %) 0% (M;;(:-u’) - %)
<00e=¢
This suggests that n € V and thus, A C V.

Hence V € §(I) because A € §(I).
Thus, 1 = (1) € (Jfg,.g_‘%)(j\’[").

Theorem 4.10 The closed ball B),[r, &|(M") is a closed set in

ij,‘fi,?f)(mr)-

Proof:

Let T = (Ty) € ¢ be like that T < B [r, e](M").

Consequently. a sequence exists '

(T7) = (T7.) € B [r,&(M") like that T converges to T

when j — oo. Thus

F(MG(T7) = MG (), r) > 1 = ¢or

GOVM(TY) = M (), r) < @

(M (T7) = M (), r) < €

5 Conclusions

A:

The article examines the convergence of the sequences cre-
ated by running the regular Jordan totient operator through a
set of finite subsets of N in the setting of ¥ ¥. In order to
reach a finite limit, it then applies the idea of a regular matrix
to an initially non-convergent sequence. We design unique se-
quence Spaces ¢y ¢ 50y (M), ¢ly g oy (M), €L 14 o g0y (M)
and {53 (M") and research their connections. Future re-
search objectives might include the creation and study of func-
tion spaces employing a generalized infinite operator.
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ABSTRACT

p
We have introduced a novel continuous distribution known as the Klongdee distribution, which is a

combination of the exponential distribution with parameter (6/a) and the gamma distribution with
parameters (2, 6/a). We thoroughly examined various statistical properties that provide insights into
probability distributions. These properties encompass measures such as the cumulative distribution
function, moments about the origin, and the moment-generating function. Additionally, we explored
other important measures including skewness, kurtosis, C.V., and reliability measures. Furthermore, we

explore parameter estimation using nonlinear least squares methods. The numerical results presented
compare the unweighted and weighted least squares (UWLS and WLS) methods, maximum likelihood
estimation (MLE), and method of moments (MOM). Based on our findings, the MLE demonstrates
superior performance compared to other parameter estimation methods. Moreover, we demonstrate the
application of this distribution within an actuarial context, specifically in the analysis of collective risk
models using a mixed Poisson framework. By incorporating the proposed distribution into the mixed
Poisson model and analyzing a real-life dataset, it has been determined that the Poisson-Klongdee model
outperforms alternative models in terms of performance. Highlighting its capability to mitigate the
problem of overcharges, the Poisson-Klongdee model has been proven to be a valuable tool.

Keywords Exponential Distribution, Gamma Distribution, Parameter Estimations, Bonus-malus

System, Actuarial Science
- J

1. Introduction

Amixing distribution in probability theory and statistics refers to a probability distribution that results
from the combination of two or more component distributions. The key concept behind a mixing
distribution is that the observed random variable is generated by mixing these component distributions,
where each component is assigned a specific weight or mixing proportion.

Mixture distributions find utility in various domains like finance, economics, biology, and signal
processing. They provide a versatile approach to modeling intricate data that cannot be suitably
characterized by a single distribution. By blending various distributions together, mixture distributions
can effectively capture a broad spectrum of data patterns, including multiple modes, heavy tails, and
asymmetry. This adaptability renders them a valuable instrument for faithfully depicting and studying
real-world data.

Estimating and analyzing mixing distributions present intriguing challenges as it involves estimating
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both the mixing proportions and the parameters of the component distributions. To tackle these
challenges, various statistical methods and techniques have been developed. These include maximum
likelihood estimation, Bayesian inference, and expectation-maximization algorithms. These methods
provide valuable tools for accurately estimating the parameters and mixing proportions of the
component distributions in a mixing distribution. They enable researchers and analysts to perform
robust analyses and make reliable inferences based on the observed data.

Let X be a continuous random variable that follows an exponential distribution with parameter A > 0,

denoted as X ~ Exp(A). Its probability density function (PDF) is given by:
flzA) = e ™, x>0, i1}

The cumulative distribution function (CDF) of the distribution has been derived as follows:

Flz)=1— e, z3>0. (2)

Let X be a continuous random variable that follows the gamma distribution with two positive
parameters, o and A, denoted as X ~Gamma(a,A). The probability density function (PDF) for this
distribution can be written as:

)i.” !.lt - I'l. —Ax

flrio, A) = ——, T = 3)
I J T(a) = (3]

Where, I'(a) denotes the gamma function. Notably, when o = 1, the gamma distribution simplifies to the
exponential distribution with parameter A, represented as Exp(A).

The CDF of a continuous random variable X following a gamma distribution with parameters o.> 0 and A

>(01is givenby:
e, Ar)
Olay

F(z) = z = 0. ()

Here, y(a,Ax) denotes the lower incomplete gamma function, and I'(a) represents the gamma function.
The two-parameter Lindley distribution combines characteristics from both the exponential and gamma
distributions [1]-[8].

Ekhosuehi, Nzei, and Opone [3] proposed a Lindley distribution with two parameters by modifying the
blending ratio between the exponential and gamma distributions, expressed as f(x) = wfl(x) + (1 —
w)f2(x), where w =1 1+, and f1 and f2 represent the probability density functions of the exponential

and gamma distributions, respectively. In other words,

y 1 g 6.0,
T, 3, 8) = ——fe” - 0,
fa bl =1 g% Y1 T ¢
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If we have a continuous random variable X that obeys the Ja-
nardan distribution (JD) [4] with two positive parameters, § and
o, we write itas X~ JD{a, #). The probability density function
(PDF) for this distribution is as follows:

flao, 8) = o {1+ az)" =",

Its CDF 15 expressed as

alf + ao®) + fo’x ]

Fiz)=1- | —
(=) alf + a®) exp( cr

x), x =0, (6)
The Janardan distribution’s probability density function (PDF)
can be expressed as o omixture of two Tamiliar distributions:
Exp[%} and Gamma(2, %}. The following demonstrates this,

flz o 0) = pfilx)+ (1 — p)falx), (7
where p = n—{Eﬁ:ﬂij'ﬁ{I) = f:fi_,': * and

.oBe a
falz) = —are =T,
Guining a comprehensive understanding of mixing distribu-
tions and effectively utlizing them can yield valuable insights
. . . —
=8 =0.5, o =01
'.'.fl 8 =05, a =02,
=08, a=01
=08, a =02,
=1, a=01
—fi= 1, =02

Figure 1. Graphs showing the PDF of the Klongdee distribution with different
parameter values,

To obtain the first denvative of Equation (10) with respect to
x, we dilfferentiate the equation accordingly:

g2

N S S S
c1:‘{9+n3j{n€ o — Bz .

d
Ef{.l._n,ﬁ']— (11}
Mow, based on Equation (11), we obtain
1. By setting f'(x) = 0, we can find the critical point of the func-
ofl — at

gz

ton. Solving for @, we have: @ = . For the case where

o < #, the value xy = ”8;_.“'i represents the unique cnitical point
where f{x) attains its maximum.

2. For the case when o = @, we observe that () < (0, indicat-
ing that f{z) is a decreasing function with respect to x. Conse-
guently, the mode of the distribution described by Equation { 10)
is given by the value of x that maximizes the PDFE, which occurs
at the lower bound of the support.

af — o
Mode = a2
0 otherwise.

if o= 8, (12)

We proceed o derive the CDF of the Klongdee distribution as
presented in Theorem 2.1,

mixture of the cxpum::nli_a.l distribution {%} and I.hc-gamrna dis-

tribution {2, "*] as follows:
@

Flaioe ) = (1 = plfilz) + pfalx), (9)
g AN
where fi{x) = ;rr_ﬁr, falx) = (;) re” =T, and
o d
P

Definition 1 Define a continuous random variable X to have a

Klongdee distribution with two parameters o and 8, denoied as
X~ KD{ev, #), if its probability density function (PDF) is ex-
pressed as follows:

B &g _a,
flria,8) = e (ﬂ:+ I:n-j z) e =",

forall e = 0,0 = 0,6 = (L

(100}

Figure 1 presents density plots depicting the Klongdee distri-
bution for specific values of o and #. The observations from
Figure 1 clearly indicate that the Klongdee distribution exhibits a
notable charactenstic of having a light tail.

as

—i =05, o =01
#=0.5 0 =02
#=0.8 o =01
=08 o =02

—d= 1, a=01 .

—#= 1, o =02

0 as ) 12 P 28 1

X

Figure 2. Graph showing the COF of the Klongdee distribution with different
parameter values.

moments for random variables), the coefficient of variation (a
measure of relative variability, C.V.), the coeflicient of skewness
{measure of distribution asymmetry), and the coefficient of kur-
tosis (measure of tail shape relative to normal distribution), and
Reliability Measures (assessment of system/process failure prob-
ability over time).

Theorem 2.2 The " moment about the origin of the Klongdee
distribution is defined as follows:

. rla{o? + (r+1)8) oy
r — 8'((‘[—’4—9} 3T = Liagadyonns

We can compute the first four moments around the origin for
the Klongdee distnbution in the following manner:

1. The first moment about the origin (mean):
¢ T eofer® +20)
= bl)ﬁl = m_
2. The seccond moment about the origin

r_ 2 e 4 38)
Ha = THIHai4d] -
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Theorem 2.1 The CDF of the Klongdee distribution is given by:

(o + ofl + 8%2) s

Flz)=1- o
() oo 4+ #)

(13)

r=0,8=>0a0 =10

Figure 2 displays the CDF plots of the Klongdee distribution
for specific values of o and 8.

2.1 Statistical properties and tools

In this section, we explore and derive several properties of the
Klongdee distribution, including the v moment about the origin
(statistical quantities describing distribution shape and character-
istics), the moment gencrating function (efficient calculation of

the mean in the following way.

o (ot + 26% + 40°8)
ba= 02(8 + a?)? !
20t (28° + a® + Gatd + Ga”6?)
038 + a2)? :
i 3o (BAY 4+ 3n® + 44at8? + 24080 + 320767)

g0 + a2t

Hy =

Specifically, the 2 moment about the mean corresponds (o the
vartance, which 1s denoted by
5 (ot + 267 + 40%0)
T = Ma = 3 TV
(8 + a*)?

(14}

Other properties found for the Klongdee distribution are as fol-
lows:
1. The coefficient of variation (C.V):
OV = Ie:: — v"u"':g TQ—Hlu*H )
2. The coeficient of skewness (V@;}:

wm M2t Eat i hate?)
UIIET = ;E?'T e (ot 4267 +de?@y) 377 -

3. The coeflicient of kurtosis ((F:):
8y — S804 4308 + 440t 05 + 20 81320704
HL (et + 289 fde=8 )= :

The moment generating function (MGF) of the Klongdee distri-
bution can be derived as follows, as follows:

flaf + 0% — o't i

] = Flet¥] = il
Mx(#) = E[e™) 0+ a)f —at)?’ o

=t

2.2 Reliability Measures

In this section, our goal 15 to obtam formulas for the reliability
measures of the Klongdee distribution. These measures encom-
pass the survival function, failure rate function, and mean resid-
ual life function. They are essential for gaining insights into the
behavior and characteristics of the Klongdee distribution, shed-
ding light on 113 reliability and lifespan properties.

The survival function, denoted as S{x}, represents the proba-

3. The third moment about the origin:
b G e )
.“'ii - Ff.i,:u'1+ifj -

4. The fourth moment about the origin:
¢ et e’ 4+30)
Ha = T aT

By verifying that # = a*, we establish a direct relationship be-
tween the Klongdee distribution and the Janardan distribution.
As g oresult, the moments about the orgin of the Klongdee dis-
tribution simplify to the corresponding moments of the Janardan
distribution.

To find moments around the mean, we can use the relationship
between moments around the mean and moments around the ori-
gin. This relationship enables us to calculate the moment around

. . . {ips 2y —a
1. Survival fimction: 5(z) = %fjg—]“e = X,

Balo+{ 2 Px)

2. Failure rate function: h(z) = s 57

406 e ) LI, g
3. Mean residual life function: miz) = ’r_:l:: i’f_r’::_: :}

=—0=0.5 a=01|
=05, u =02
#=0.8, o =017
=08, o =02

—fn 1, sl |-

— = 1, =02 |

] 5 T 5

Figure 3. The failure rate function of the Klongdee distribution for various pa-
rameter values.

Figure 3 displays the failure rate function of the Klongdee dis-
tribution. It 15 worth noting some important properties ol the
failure rate function in relation to the Klongdee distribution:

Atz = 0, the failure rate function takes the value ki) =
Hfr:',z . Interestingly, this value is equal to the PDF evaluated at
x = 0, denoted as f{0). This indicates that the failure rate at the
origin 1s equal to the density of the distribution at the origin.

The mean residual life function at © = 0, denoted as m{(0),

corresponds o the derivative of the moment generating function
evaluated at = = (. In other words, m(0) = pf, where p} repre-
sents the derivative of the first moment about the origin.

The derivative of the failure rate function, denoted as h'(x),
is greater than zero. This indicates that the failure rate function
hix) is an increasing function of =, «, and &. In other words, as
x, o, or # increases, the failure rate also increases. This implies
that the failure rate tends o increase with time and with higher
parameter values.

Mathematics and Statistics ( Volume No. - 13, Issue - 2, May - August 2025)

Page No.38



ISSN: 2332-2071 (Print)
ISSN: 2332-2144 (Online)

bility that a Klongdee random variable exceeds a specified time
t. It can be obtained by subtracting the CDF from 1:

The failure rate function, denoted as h(t) or h(x), provides in-
sights into the instantaneous failure rate at time ¢. It is defined as
f(z)
S()

Lastly, the mean residual life function, denoted as m(x), rep-
resents the expected remaining lifetime given that a Klongdee
random variable has survived up to time z. It is defined as the
ratio of the expected remaining lifetime to the survival function:
E[X —x|X > 1.

the ratio of the PDF to the survival function: h(z) =

Theorem 2.3 For = > 0, with parameters 0, > 0, reliability
measures of the Klongdee distribution are defined as follows:

the underlying parameters of a system holds vital importance for
informed decision-making and drawing meaningful conclusions.
The aim of parameter estimation is to determine the most opti-
mal estimate or approximation for the unknown parameters, en-
suring the best possible fit between the model and the observed
data. This involves selecting an appropriate estimation method.
In this section, we employ four techniques to estimate the param-
eters of the Klongdee distribution. These techniques include the
UWLS method using the CDF, the WLS method using the CDF,
the method of moments (MOM), and maximum likelihood esti-
mation (MLE). By utilizing these techniques, we aim to obtain
estimates that accurately capture the true values of the param-
eters. We then apply these estimation methods to the available
data, ensuring that the derived estimates faithfully represent the
underlying parameter values of the Klongdee distribution.

3.1 Unweighted least squares method via the CDF

This method is a popular technique for parameter estimation in
statistical analysis. It aims to minimize the sum of squared dif-
ferences between the observed CDF values and the correspond-
ing CDF values predicted by the distribution. By focusing on the
overall fit of the CDF, this method offers a straightforward and
intuitive approach to estimating distribution parameters.

The UWLS method via the CDF assumes that the observed
data points, denoted as X, X5, ..., X, are generated from ran-
dom variables that follow the Klongdee distribution, represented
as X; ~ KD(a, ). This assumption ensures that the data con-
forms to the specific Klongdee distribution with parameters o
and #. Additionally, it is assumed that the observed data points
are independent of each other, meaning that the values of X; do
not depend on or influence each other within the dataset.

{013 + all + 6‘2.1:) ‘—”a,-)

log(F(x)) = log (1 WP «

(15)
z>0,0>0,0>0.

Consider n ordered observations, where 0 < 21 < a0 < ... <
. In the context of the Klongdee distribution with parameters o
and #, these observations can be treated as independent and iden-
tically distributed random variables, denoted as X, Xo, ..., X,,.

On the other hand, the mean residual life function, denoted as
m(x), is a decreasing function of z, «, and #. This means that
as x, a, or f increases, the mean residual life decreases. This
implies that the expected remaining lifetime tends to decrease
with time and with higher parameter values.

These properties offer valuable insights into how the failure
rate function and mean residual life function behave within the
Klongdee distribution.

3 Estimation of Parameters

Parameter estimation is a critical task in statistics and data
analysis, with the primary objective of deducing the unknown
parameters of a statistical model based on observed data. Its sig-
nificance spans across diverse disciplines, including economics,
engineering, biology, and social sciences, where comprehending

where =, av. 6 > (.
=1,2,...,n.

an

For a real number d such that 0 < d < 1, we select four com-
monly used expressions as estimators of F'(x; ), where F(x;) rep-
resents the CDF at the i-th ordered observation ;.

r_t—al—_l" k=1
:.:-ll?:‘.} k=
we = { LT = )
= k=4
:,:f,.; k=5

For: = 1,2,3,...,n and a real number r in the range of (0,
1), our objective is to estimate the parameters o and ¢ using the
UWLS method. This entails minimizing the following function:

. s ) (@ + af + 6%z;) o, 2
Eyla,0) = Z (10!%'(“43\) — log (l - Wc a .

=1

(19)

By solving the given equations for k = 1,2, 3,4, 5, we can de-
termine the values of the unknown variables.

0
(‘)_(}'Ek(a: 6) =0,
7]
5 () = 0.

Then, for £ = 1,2,3,4,5, we can proceed with the following
calculations.

5498 2022 4 B3 )\p. et
Ap (s, o, 0) = (a” — a8 + 0%z, + x;)xie G
(a(a? +0) — (a® + af + 62x;)e=®)

(20)
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log(F(x:)) = log(a(a® + 6)
—log((a® + af + 62z)e "))

— log(a(a® + 0)), (16)

n

(0F + a2022,03x,))zie 7w “

Z [lt)g (é(d‘z +6) — (&° +ad + {;QTA)(’__*H*‘ - lt)g(ulk))] Ap (24, &, 0)

log(a) = =

i Ak (.‘]?z'., :‘3:, é)
i=1

and

T

> llog(a(a® +0) — (&* + ab + f2;)e s

lt)g(é) = =

By(z;, a,0) = ——- (21)
kl ) (a(02 +0) — (a® + af + 62z,)e o ©)
We obtain
—log(a® +0), (22)
F}*‘) — log(uir)| B (i, &, 0)
+log(@) + log(a26 + 6%).  (23)

in(:r,i,é.é)
i=1

We utilize an iterative method to estimate o and £ from Equation
(22) and (23), yielding the respective estimators ¢ and f. This it-
erative procedure involves repeatedly updating the estimates until
convergence is achieved.

3.2 Weighted least squares method via the CDF

The weighted least squares method via the CDF is a statistical
technique used for parameter estimation. In this method, each ob-
servation in the dataset is assigned a weight, which reflects its rel-
ative importance in the estimation process. The weights are typ-
ically determined based on the characteristics of the data or the
specific needs of the analysis. By incorporating these weights,
the method emphasizes the observations with higher weights,
giving them more influence in the estimation of the parameters.
The weighted least squares method via the CDF aims to minimize
the weighted sum of squared differences between the observed
CDF values and the corresponding CDF values predicted by the
distribution, providing a more tailored and flexible approach for
parameter estimation compared to the UWLS method.

In order to address the potential issues associated with using
the same weight for all data points, it is important to introduce
a weighting factor to the values. This is done in Equation (19).
To determine the weighting factors, a variance stabilizing trans-
formation can be utilized. Bickel and Doksum [9] proposed
an approach that relates the variance of log(u;;), denoted as

i=1

Var(log(u,;)), to the uncertainty of u;x, denoted as Var(u;;).
By considering this relationship, we obtain the following expres-
sion:

Aog (i) \ 2
Var(log(u;)) = (M) Var(u),
Oy,
which gives
2
Var(log(u;,)) = ( ) Var(u,).
Mt

This relationship allows us to estimate the appropriate weight-
ing factor for each observation based on the corresponding vari-
ance. By incorporating these weighting factors into the estima-
tion procedure, we can obtain more accurate and reliable param-

eter estimates.
Hence, in order to minimize the given function, we employ
w;y, as the weighting factor, defined as uyy, = u2

ik
n o + ol + 02x;) - 2
Ep(a,0) = Zm,k (log{uik} — log (1 — (279)(' E m‘)) .
= al(a? +6)
(24)

k=1,2,3,4,5 and we solve Equation (24) in the same manner
as before.
Then,

n -
3w [Iog (a(&z +8) — (6 + a6 + 6%z;)e 5 — log(uik])] Aplzs, &, 0)

log(a) = — log(a? + 8), (25)
> wip Agli, &,0)
i=1
and
n -
Z wi logl(a(é? + 8) — (6% + af + 52:&;)6%&1") — log(ug, )| By (xi, &, )
log(f) = — =1 + log(@&) + log(&26 + 62). (26)

n
E’wik-gk(xi: é, é}

i=1

We employ an iterative method to estimate o and ¢ from Equa-
tions (25) and (26), resulting in the estimators & and ¢, respec-

tively.

By equating the theoretical first moment of the Klongdee distri-
bution, denoted as E[X], with the sample mean, denoted as T,
we can proceed with the estimation process.
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We employ an iterative method to estimate v and ¢ from Equa-
tions (25) and (26), resulting in the estimators & and ¢, respec-
tively.

3.3 Method of moments

The method of moments (MOM) is a widely used method for
estimating the parameters of a statistical distribution based on
sample moments. The main principle behind MOM is to equate
the theoretical moments of the distribution with the correspond-
ing sample moments and solve for the unknown parameters.

In the case of the Klongdee distribution, MOM involves equat-
ing the theoretical moments of the distribution (such as the mean,
variance, skewness, etc.) with the sample moments calculated
from the available data. By equating these moments, we can de-
rive equations that allow us to estimate the parameters ¢ and 6.

In order to estimate the two parameters of the Klongdee distri-
bution, we can utilize the first moment about the origin (mean).

Here, & and @ represent the estimators of the parameters v and 6,
respectively.

3.4 Maximum Likelihood Estimates

The Maximum Likelihood Estimates (MLE) method assumes
that the observed data points, denoted as @1, 2, .. ., Ty, are gen-
erated from random variables that follow the Klongdee distribu-
tion. Additionally, it is assumed that these data points are in-
dependent and identically distributed (i.i.d). The observed fre-
quency in the sample corresponding to X = z is denoted as f,,
where » = 1,2,... k. Here, k represents the largest observed
value that has a non-zero frequency. It is important to note that
the sum of all frequencies, Ei_l «» equals the total sample size
n. These assumptions are crucial for applying the MLE method
to estimate the parameters of the Klongdee distribution based on
the observed data.

The likelihood function, denoted as L, of the Klongdee distri-
bution is expressed as follows:

- 0 n k . P ) fe 5 na)
=(g7a) (ot Qre) o=

=1

(27

Therefore, the log-likelihood function is obtained by taking the
natural logarithm of the likelihood function, resulting in:
(28)

InL=nlné —nln(@ + o ) + Z fo In(ee + [9) Ty — E(ni)
o

x=1
By differentiating Equation (28) with respect to ¢ and o, we
obtain the following partial derivatives:

dnL n ni
3 0 O+a Zf* +92 -5 @
dlnL —92r  Oni
da 9+a2 Zf ol + abir T (30)

It appears that the two equations (29) and (30) cannot be directly
solved. Nevertheless, the Fisher’s scoring method can be em-
ployed to solve these cqualions considering that we have

2 1n L -1 Z P (Za"i:r — 2622 )
: * (a® + 6%x)2 !

o0 T et terare (9+u 3D

By equating the theoretical first moment of the Klongdee distri-
bution, denoted as E[X], with the sample mean, denoted as z,
we can proceed with the estimation process.

ala? + 26
EX]=X

Let us assume that § = ba?.
obtain the following expression:

By making this assumption, we

% ala? + 29)
00 + a2)
Therefore,
s 142 1 1+2
b+ )X b \bb+1)X )

4  Numerical results

In this section, we present the numerical results in three dis-
tinct categories. The first part highlights the application of the
method to real data, demonstrating its practical utility in real-
world scenarios. The second part showcases a simulated study,
providing insights into the method’s performance under con-
trolled conditions. Lastly, we delve into claim modeling and
insurance premium pricing, specifically examining its applica-
bility within a bonus-malus system. By organizing the results
in this manner, we provide a comprehensive overview of the
method’s effectiveness and its potential applications across vari-
ous domains.

4.1 Application to real data

In this section, we proposed two real datasets: one about the
waiting times of 100 bank customers [2], and the other about the
survival times of 121 patients with breast cancer [10].

Table 1 presents the fittings of the Klongdee distribution,
which pertain to the waiting times (in minutes) of 100 bank cus-
tomers. The parameters have been estimated using the method
of moments. For the purpose of comparison, the expected fre-
quencies based on the Lindley distribution (LD) and Janardan
distribution (JD) are also provided alongside those obtained from
the Klongdee distribution (KD). The results highlight that the
Klongdee distribution exhibits a superior fit to the data when
compared to the Lindley and Janardan distributions. Moreover,
Table 1 presents the expected frequencies for further analysis and
comparison.

By looking at Table 1, we can see that the Kolmogorov-
Smirnov (KS) statistics are very similar for all three distributions.

Also, when the chi-square (Xz} value decreases, it means that
the observed and expected frequencies match better. The KD
distribution has the lowest x? value, which shows it agrees better
with the expected frequencies compared to other methods.

The survival times of 121 patients with breast cancer obtained
from a large hospital in a period from 1929 to 1938 as shown in
Table 2. Table 3 presents the fittings of the Klongdee distribution,
which pertain to the survival times of 121 patients with breast
cancer obtained from a large hospital in a period from 1929 to
1938. It's evident from the experiment that when using the WLS
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2no

dlnL
Ao (A + a?)?

x=1

a%InL 2na? — 2nf

—6abx T

T2 S gy T

T

ot
{12

da? (0 +a?)?

x=1

i (a“ — 1080?22 — 20422

(a* + af?z)?

(32)

20nT

) ad

(33)

The equation for estimating 6 and & can be solved using the

following expressions:

nl  P?lnl .
962 900a | Y-
{E)%L (?2EnLJ & —
dad da?

Bo

NnL
a0

= ; (34)
g { (")ERLJ

Ja

where #y and o are the initial values of ¢ and o respectively.
This equation is solved iteratively until sufficiently accurate esti-

mates of § and & are obtained.

method with & = 2, the chi-square value is minimized. The chi-
square values for the WLS and UWLS methods are quite similar.
Conversely, when employing the WLS method with k = 4, the
KS test yields the lowest value, while the KS test values remain
similar for the WLS and UWLS methods. However, it’s worth
noting that the MOM method produces a notably higher KS test
result.

4.1.1 A simulated study

Based on the waiting time data presented in Table 1, we esti-
mate the parameter values (¢, o) = (0.0077,0.0422) using the
method of moments. To generate samples from the specified dis-
tribution with the parameter values (6, a) = (0.0077,0.0422),
we utilize the acceptance-rejection method [11]. In this process,
we set the sample size to 1,000 and perform 1,000,000 itera-
tions for each method to ensure sufficient sample generation and
accurate representation of the distribution.

Table 1. Waiting times (in minutes) of 100 bank customers for observed and expected frequencies.

Waiting time | Observed Expected frequency
(minutes) frequency LD JD KD (MOM)
0-5 30 30.39 30.16 29.92

5.01-10 32 30.69 30.92 29.79
10.01-15 19 19.21 19.32 19.18
15.01-20 10 10.28 10.28 10.63
20.01-25 5 5.08 5.05 5.46
25.01-30 1 2.39 2.37 2.67
30.01-35 2 1.09 1.07 1.27
35.01-40 1 0.49 0.47 0.59
total 100 99.62 99.64 99.51
Estimated parameters 0 =0.1807 | 6§ =0.2139 | 6 =0.0077
&= 11189 | & = 0.0422
2 2.1711 2.2499 1.9956
d.f. 6 5 5
KS test 0.90038 0.90043 0.90049

Table 2. Survival times of 121 patients with breast cancer.

squared test statistic (Xg) is utilized, which is defined as follows:

Survival times

Observed frequency

0.3-19.5125 32
19.5025 - 38.7250 26
38.7150 - 57.9375 28
57.9275-77.1500 13
77.1400 - 96.3625 8

96.3525 - 115.5750 6

115.5650 - 134.7875 6

134.7775 - 154.000 2
total 121

T

X=>

i=1

(0; — )

where, O, represents the observed value and E; represents the
expected value for each category. By calculating the Chi-
squared test statistic, we can evaluate the discrepancy between
the observed and expected values and determine the goodness
of fit of the estimation methods. Furthermore, we employ the
Kolmogorov-Smirnov test, which can be described as follows:

max | Fo(x) — Fr(z)|,

where Fo(z) denotes the CDF observed in a random sample of
n observations, while Fr () pertains to the theoretical frequency
distribution.
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Suppose we have a requirement to sample a random value x;
from the Klongdee distribution, denoted as f(x), in order to cal-
culate the function value for any given x. To accomplish this,
we define an auxiliary distribution function as a uniform distri-
bution. We select a value for the “envelope constant”™ (m. > 0),
which is used to scale the auxiliary distribution and create the
“blanket function” denoted as m - g(x). The choices of g and m
must satisfy the condition m - g(x) > f(x) for all z. For the
waiting time data, it is possible to choose m > 2.8. In this simu-
lation, we specifically choose the value of m = 2.8 to ensure the
blanket function adequately covers the Klongdee distribution.

In this section, we perform a comparative analysis of four dis-
tinct parameter estimation methods: the UWLS method via the
CDF, the WLS method via the CDF, the MLE and the MOM.
The results of this simulation study are presented in Table 4,
providing a comprehensive overview of the performance of each
method. Additionally, Table 5 displays the corresponding chi-
square values associated with each estimation method, further
aiding in the evaluation of their effectiveness.

In our analysis, we employ the Chi-squared test as a metric to
assess the performance of the estimation methods [12]. The Chi-

The analysis of Table 4 reveals that among the UWLS meth-
ods, the one with & = 4 stands out as the most favorable. Sim-
ilarly, within the WLS methods, the one with £ = 1 emerges
as the top performer. These findings suggest that these specific
parameter configurations yield the most accurate and reliable es-
timations within their respective methods.

We proceed to compare the optimal UWLS, the optimal WLS,
MLE, and MOM methods. Using a significance level of 0.05,
we obtain X?}.ns,s = 11.07 from Table 5. Upon examination of
the table, it becomes apparent that the estimates obtained through
UWLS (k£ = 4), WLS (k = 1), and MLE are all below 11.07 and
display a high degree of similarity. However, the Chi-squared
value associated with the MLE method surpasses the others, in-
dicating its superiority in terms of goodness of fit.

4.1.2 Bonus-Malus System

In this section, we mix the Poisson distribution with the pro-
posed distribution and apply the mixed distribution to an actual
dataset. Our goal is to demonstrate that our mixed model is su-
perior to other competing models in terms of how well it fits the
data. Additionally, we present a model for calculating automo-
bile insurance premiums under the bonus-malus system.

Table 3. Survival times of 121 patients with breast cancer for observed and expected frequencies.

Observed

Expected frequency

[
TWLS WIS
frequency I =1 = = (=3 (=] =] =1 = = = MM MLE
5 3T a7 3035 3033 3033 BN 019 062 338 .08 W 309
2% 28 88 28 88 2757 2757 2757 2799 828 2546 30 601 2855 2576 2777
28 2161 2161 2109 2109 L 20,93 2158 1951 2253 2100 2027 2180
13 14.70 1470 1484 1484 1484 14.46 1497 1423 1478 1426 1487 15.46
§ 9.47 947 9.93 993 9.93 9.53 9.84 10,05 .08 922 1045 10.34
3 5.80 589 642 6.42 6.42 6.08 6.23 693 537 578 7.13 6.66
6 3.57 57 406 406 406 379 385 470 308 153 4.76 418
1 212 212 152 252 252 23 233 3.4 174 112 312 257
T = 121
a 00006 00006 00006 00006 00006 00007 00006 00008 00005 00008 00006 0.0005
a 00189 00189 00199 0099 00199 00228 00177 0028 00147 00237 0210 00146
X2 42852 42852 41062 41062 41062 42573 40626 50946 52450 46063 50436 43233
df 5 5 5 5 5 5 5 5 5 5 5 5
KS test 00334 0034 00575 00578 00578 00418 0002 00860 00320 00300 00930 00689

Table 4. Estimation Results for @ = 0.0077 and

a = 0.0422 with a Sample Size of 1,000 and Waiting Time Data using UWLS, WLS, MLE, and MOM Methods.

Methods
MLE MOM UWLS WLS
[} « f o k [} o [ ot
1  0.008620 0.042426 0.007211 0.041406
2 0.008110 0.042066 0.006687 0.042586
0.005480  0.029499 0.008684 0.041493 3 0.007787 0.042681 0.007731 0.041440
4 0.007353  0.042069 0.0060233 0.042617
5 0.008153 0.043147 0.008287 0.042139

To enhance the modeling of the claim frequency distribution
in automobile insurance, each policyholder is assigned a risk pa-
rameter that signifies their risk of experiencing an accident. This
risk parameter is considered a random variable that varies among
policyholders and follows a prior distribution. One proposed ap-
proach for modeling the frequency distribution involves mixing
the Poisson distribution with the Klongdee distribution.

Mixing distribution : Assuming that the probability mass
function (PMF) for the count of claims, denoted by y, is repre-
sented by the Poisson distribution with a parameter value of A,
the PMF can be formulated as follows:

emANY

flh) = —
y!

y=0,1,2,...,A = 0. (35)
The expected value or mean of the Poisson random variable is
E[Y|A] = A

The average number of claims made by a policyholder reflects
their underlying risk, represented as a constant value denoted by

where v > 0,60 > 0andy = 0,1,2,.. ..

Modelfitting : [13] presented a dataset on the distribution
of automobile insurance policyholders according to the number
of claims. This dataset is observed to be highly skewed towards
the right and over-dispersed, where the variance is greater than
the mean. The Poisson distribution (PD) is widely recognized as
an unsuitable option for automobile insurance claims due to its
mean and variance restriction. As a result, a mixed Poisson dis-
tribution with a prior distribution is preferred in such cases. Table
6 presents a comparison between the mixed Poisson model and
the proposed model, including the Poisson-Lindley distribution
(PLD), using maximum likelihood parameter estimation. The
Chi-square statistic values indicate that the Poisson-Klondgee
distribution (PKD) offers a superior fit to the dataset compared
to other distributions.

Bonus — Malus premium : Many countries have imple-
mented a bonus-malus system (BMS) that rewards policyholders
with no claims and punishes those with claims. Thus, the follow-
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A. In the proposed model, A is assumed to adhere to the Klongdee
distribution with parameters & and . This distribution can be
characterized by the probability density function (PDF) of A, as
shown below:

r(\) = ﬁ (rx + (2)2,\) BN,

forall A > 0, > 0,6 > 0. Outlined below is the procedure
to derive the mixed Poisson distribution in conjunction with the
Klongdee distribution:

(36)

) = ]ﬂ 7 IN) 70 dx

e ANY ] %
=[G (e D) e
A ,

~ Ba¥[oP(a+0) + 62 (y + 1)]
B (0 + a?)(a + 0)yt2

(37)

ing year’s premium is determined by the policyholder’s history
up to the current year, regardless of the claim size. [14] calcu-
lated the BMS premium using the following formula:

Erne(apm)[L(A)]
E)[l(N)]

where I(A\) = >°°° (nP(N = n|A), w()\) represents the prior
distribution, and 7*(A|n) signifies the posterior distribution.
Consequently, when working with a sequence of independent and
identically distributed claims denoted as n = (11, na,..., 7). it
becomes clear that deriving the posterior distribution is a simple
process achieved by dividing the mixing distribution by the
marginal distribution, as depicted below.

Premium, .; = x 100, (38)

P(n[A)r(A)

™ (Aln) = T Pl \)r(0)dx

(39)

Table 5. Chi-squared Test Statistic (7} Results for UWLS (k = 4), WLS (& = 1), MLE, and MOM Methods with Waiting Time Data.

Waiting time (minutes)  f Methods .
UWLS{k=4) WLS{k=1 MLE MOM
0-5 275 2887408 2B6.8614  2BB.3657 3421238
5-10 303 201.7746 201.3072 3054621 319.1345
10-15 198 193.2380 1936271 196.3265 18%1.9561
15-20 124 110.4687 111.0644  107.4397 88.4414
20-25 6l 58.5476 39.0564 54.2461 306778
25-30 22 20,6272 209814 26,0014 16.9610
30 - 35 11 14.53315 14.7525 12,1485 T7.0194
35-40 7 H.0688 7.0974 5.5265 28384
Estimated pacometers 0.0074 0.0072 (.0055 0.0087
0.04207 0.0414 (.0295 0.0415
Y- 5.7185 5.6608 49595  49.9615
KS test 0.0172 0.0181 0.0158 0.0832
Table 6. Number of claims in automobile insurance.
. Observed Expected frequenc
Number of claim frequency PD P PLD “q Al PKD
0 73,232 63,094.32 63.252.68 63,234.36
1 4333 4590.55 42492.03 4326.26
2 271 167.00 290.30 277.25
3 18 4.05 19.58 17.05
4 2 0.07 1.32 1.02
5 ] 0.00) 0.09 0.06
total (7,856 (7,856 67,856 67,856
Estimated parameters #=0.07258 | ¢ = 14.6238 | ¢ = 643.2161
v = 34. 7107
y2 177.9421 29507 | 1.2083
al(t + 2yn+2 M 92
O = oy [ﬂ_:fui E}) e rrey K (n- + 0_2)\) A (40)
Premining ; Bln+ L)(a® +46) . oot +8) + 82 (n 4 2) . 100. @

(at +0)(a? +20) ofat +8)+ 62 (n+1)
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The posterior distribution of the Poisson-Klongdee dis-
tribution can be expressed in the following form:

By utilizing Equation (41), we compute the bonus-malus pre-
miums only considering the frequency component. The out-
comes we obtain are showcased in Table 7.

According to Table 7. policyholders who do not submit any
claims in the first year receive a bonus equal to 5.95% of the
base premium. On the other hand, policyholders who make a
single claim during the first year face a penalty of 76.19% of the
base premium. Claim-free policyholders enjoy lower premiums,
whereas premiums increase for policyholders who file claims.

In order to facilitate comparisons, we have computed the
bonus-malus premiums using the traditional Poisson-Lindley
model (see [15], for details). The results are displayed in Table
8.

Based on the results showcased in Table 8, policyholders who
refrain from submitting any claims in the first year receive a

bonus equivalent to 6.74% of the base premium. In contrast, pol-
icvholders who file a single claim in the first year incur a malus
amounting to 85.92% of the base premium.

The Poisson-Klongdee model demonstrates a lower level of
penalization in comparison to traditional Poisson-Lindley mod-
els, highlighting its ability to alleviate the issue of overcharges.

5 Conclusions

A two-parameter continuous distribution called the Klongdee
distribution has been introduced. This distribution’s properties,
including its CDF, expected value, v moment, and parame-
ter estimation using nonlinear least squares methods, MLE, and
MOM, have been proposed.

Table 7. Bonus-malus premium using Poisson-Klongdee model.

. Number of claims
0 1 2 3 4 3

0| 100.00

1| 9405 176,19 253.60 325.66 40237 47526
2| BRT73 16677 24044 31190 382.09 45148
3| 8394 15826 22854 29673 36371 42992
4 | 7963 15055 21772 28292 34698 41029
51 7571 14352 207.84 27031 331.68 39235
6| 7214 137.09 19879 25874 317.65 37587
7| 6888 13119 19047 248.10 304.72 360.70

Table B. Bonus-malus premium using Poisson-Lindley model.
¢ Number of claims
0 1 2 3 4 3

0| 100.00

1 | 9326 18592 278.08 36981 461.17 55222
2| 87.37 17423 260.67 34674 43250 51799
3| 8217 16392 24530 32637 407.17 487.72
4 | 7756 15475 231.63 30824 384.61 46077
5| 7343 14655 21940 29201 36441 436.63
6| 69.72 13918 208.39 27739 346.21 41487
7| 6637 13250 19842 264.16 32974 39517
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The simulation results are divided into two parts. In the first
part, the Klongdee distribution is applied to a data set represent-
ing waiting times in order to test its goodness of fit. The results
show that the Klongdee distribution provides better fits compared
to the earlier fits of the Lindley distribution and Janardan distri-
bution. In the second part, we obtain the parameters for gener-
ating data based on the results from the first part. We then com-
pare the performance of four methods using the Chi-squared test.
Our analysis concludes that the MLE estimators outperform the
UWLS, WLS, and MOM estimators in terms of performance.

In the context of actuarial science, we propose the mixed Pois-
son with Klongdee distribution as a model for claim modeling.
We utilize this mixed distribution to develop a pricing model for
insurance premiums based on the BMS. The findings indicate
that the Poisson-Klongdee distribution has the ability to address
the problem of overcharging.

The Klongdee distribution is specifically designed to suit right-
skewed data. However, its application to datasets exhibiting dif-
ferent skewness characteristics can result in inadeguate fit and
inaccurate outcomes. It's imperative to thoroughly evaluate the
skewness of the data before selecting the distribution. When deal-
ing with data that lacks right-skewness, considering alternative
distributions like the normal or gamma distribution is advisable,
as it has the potential to yield more accurate results. In forthcom-
ing research, we aim to investigate the feasibility of relaxing spe-
cific assumptions in our applications, notably the assumption of
independence. This exploration will involve assessing the poten-
tial implications of such relaxations on our conclusions. Further-
more, our future endeavors will encompass expanding the model
to encompass a wider array of assumptions and complexities.
This extension aims to elevate the applicability and robustness of
our findings to a broader range of scenarios. In conclusion, com-
prehending the intricacies of mixture distributions is instrumen-
tal in refining decision-making processes. By adeptly capturing

6] R.Shanker, H. Fesshaye, 8. Sharmbhu, On Two - Parameter Lind-
ley distribution and its applications to model lifetime data, Bio-
metrics & Biostatistics International Journal, Vol 3, 9-15, 2016.

[7] 5. Sarma, L. Ahmed, A, Begum. A New Two Parameter Gamma-
Exponential Mixture, Journal of Mathematical and Computational

Science, Vol.11, No.1, 414-426, 2021.

[8

5. Boonthiem, A. Moumeesri. W. Klongdee, W. leosanurak. A
new Sushila distribution: properties and applications, European
Journal of Pure and Applied Mathematics, Vol.15, No.3, 1280-
1300, 2022.

9] PJ. Bickel, K.A. Doksum, Mathematical statistics: basic ideas and
selected topics, volumes [-11 package, CRC Press, 2015,

[10] E.T.Lee, Statistical Methods for Survival Data Analysis (2nd Edi-
ten), John Wiley and Sons Inc., 1992,

complex patterns and revealing latent structures within datasets,
these distributions empower us to formulate strategies that are not
only well-informed but also precise in real-world applications.
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