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Osgood type blow-up criterion for the 3D Boussinesq equations
with partial viscosity

Zhaoyang Shang*
School of Mathematical Science, Shanghai Jiao Tong University, Shanghai 200240, P.
R. China

ABSTRACT

This paper is dedicated to studying the blow-up criterion of smooth solutions to the three dimensional
Boussinesq equations with partial viscosity. By means of the Littlewood-Paley decomposition, we give an
improved logarithmic Sobolev inequality and through this, we obtain the corre sponding blow-up criterion
inaspace larger than #, . . which extends several previous works.

Keywords: Boussinesq equations; blow-up criterion; Besov space

1. Introduction

In this paper we consider the following Cauchy problem of 3D Boussinesq system:

u, —vAu+u-Vu+ VP = Oes,

0, — kA +u-Ve =0,
4 (1.1)
V-u=0,

u(x,0) = up(x),  6(x,0) = 6(x),

where, u = (u'(x,1),u*(x, 1), u’(x,1)) is a vector field denoting the velocity, # = 6(x,t) is a scalar
function denoting either the temperature in the content of thermal convection, or the density in the
modeling of geophysical fluids, P = P(x,t) the scalar pressure and e; = (0,0, 1) is the unit vector in
the x; direction. The parameters v,k > 0 represent the kinematic viscosity and molecular diffusion

coeflicients, respectively, while u, and b, are the given initial data.
The Boussinesq system has widely been used in atmospheric sciences and oceanic fluids[13, 18].
Local existence and uniqueness theories of solutions have been studied by many mathematicians and

physicists(see,e.g., [1,2,14]).Chaeestablishedtheglobalregularitycriteriaforthe2DBoussinesq
equationswithpartialdissipationincelebratedpaper[3].Recently,Ye[23]consideredthecasewith
horizontaldissipationinthehorizontalvelocityequationandverticaldissipationinthetemperature equation.
Similar resultsaboutglobal regularityfor2Dincompressiblefluidmodelspleaserefer to  [11,12],
andthereferencetherein. However, for the3DBoussinesqequations,whether theunique local
strongsolutioncanexistsgloballyforgeneral large initialdata isanoutstandingchallenging

openproblem.Therefore, itisimportanttostudythemechanismofblow-upandstructure of possible
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singularitiesofstrongorsmoothsolutionstothesystem(1.1). IshimuraandMorimoto[16]provedthe
followingblow-upcriterion
Vu € L'(0, T; L™(RY)). (1.2)
FanandOzawa[9]andFanandZhou[10]establishedthefollowingrefinedblow-upcriterionfor
system(1.1)as
curlu € L'(0,T; B2, ), (1.3)

with v = 1,« = 0 (zero-diffusive case) and v = 0,k = 1 (zero-viscosity case), respectively. By means
of the Littlewood-Paley theory and Bony’s paradifferential calculus, Qiu-Du-Yao [19] extended the
condition to

, 2 3 3
ueL'(0.7:B, (R)),=+==1+s, <p<oo,—1<s<1,(ps)# (0, 1), (14
’ q p !

l+s

and further studied by Dong-Jia-Zhang[5] in the case of x = (. Zhang and Gala [24] gave an Osgood
type regularity criterion for the Newton-Boussinesq equation, that is,

s, v o
ap [ BVl (1.5)
=2 Jo qglng

where § g = Zj"}q Ay, A, being the homogenous Fourier localization operator.
Recently, Wu-Hu-Liu [21] established the blow-up criterion (1.5) for the Boussinesq equation with
full viscosities (v = 1,k = 1) and Ren[20] obtained the following blow-up criterion
T A curl e
f sup Mdr = oo, (1.6)
0 2<g<oo logg

with the zero-viscosity constant. Here, A, stands for nonhomegenous Littlewood-Paley projector op-
erator. For more results about blow-up criterion for the system (1.1), we refer to [4, 6, 7, 15] and the
reference therein.

Motivated by above-mentioned results, the purpose of this paper is to establish a blow-up criterion
in a space (see definition 2.1) larger than BEO,OO. We should point out that, in the thesis [22], the author
gave the blow-up criterion (1.3) for the fractional Boussinesq equations in n-dimensions(n > 2) by
using commutator operator estimate and the inequality

4
IVl < IIVH(T(})IILvexP{ IVa(T)lleo d‘r}, p €2, ], (1.7)

Ty

where L*-norm of the gradient of velocity can be controlled as

IVulle < C (1 + llullz + IV X ullgo,_log (e + [A*ull2)). s> 1+ g

However,forourcases,thelogarithmicSobolevinequalitybecomes
3
lell < C (1 + llullyy In(lldlliz + €) In(in(llullgn + €) + &), m > 7 (1.8)

thenwecannotapplytheinequality(1.7)in[22].Therefore,somenewestimatesneedtobedeveloped.
Inthispaper,wewill takeuseof the L“-norm of the temperature due to the special structure of the

temperature equation. Through the boundness of 110l and elaborate energy estimate which together
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the logarithmic Sobolev inequality, we obtain our main results. As a consequence, we improve the

results inreference [9, 10, 20, 21].

The paper is organized as follows. In section 2, we recall the definition of Besov space and state our main
results. The commutator operator estimate and the logarithmic Sobolev inequality are presentedin

Lemma?2.1 and Lemma 2.2, respectively. Section 3 is devoted to proving Theorem 2.1.
Through this paper, C stands for some real positive constants which may be different in each occurrence.
2. Preliminaries and main results

Before presenting our results, we introduce some function spaces and some notations. First, we are going
to recall some basic facts on Littlewood-Paley theory. Let S(R*) be the Schwartz class of rapidly

decreasing functions. Given f € S, its Fourier transform 7r =7 is defined by

f@& =2r2 f e f(&)dx.
R3

Choose two nonnegative radial functions X and ¢, valued in the interval [0,1], supported in B ={¢ € R?, |¢|

< %}, C={£€ R3, % < )] < %}, respectively, such that

X@+ D 92 =1, VEeR

j20

D eI =1, VEER\{0).
JEZ

Leth=F ¢ andh = F! . The homogeneous dyadic blocks A ; and the homogeneous low-frequency
cut-off operators S ; are defined for all j € Z by

Aju = 927 Dyu = 2% f hQ27yyu(x = y)dy,
R3

and
S ju=x(2 ' Du=2% f h(2y)u(x - y)dy.
3

R

Formally, A ; is a frequency projection to the annulus{|¢| = 2/}, and S ; is a frequency projection to the
ball {|¢| < 2/}. By using of Littlewood-Paley’s decomposition, we give the definition of the homoge-
nous Besov space.

AIMS Mathematics (Volume - 10, Issue - 2, May - August 2025) Page No. 3



Let s € R, 1< p,g <co. S, ={ueSRY; lim §; = 0} which can be identified by the quotient
Jjo—o0

space of S'/P with the polynomials space P. Then the homogenous Besov space B};;,q is defined by

B, = {ue SR |lullz, < o)

where

o
T i
(> 2"NAulll,)e, for q< oo
gy, = =
sup 27°[|A jul|», for g =oco.

JjeZ
Next, we introduce the space of Besov type, see [17].

Definition 2.1. Let O(a)(> 1) be a nondecreasing function on [1,00]. We denote by Ve the set of
tempered distributions u such that {u € S;T(R:*); |lully, < oo} and the norm is defined by

i I L n Ajulls
ully, = sup —
o= b e

Remark 2.1. We can easily see that ||ully, < Cllullp < Cllullgyo < Cllullr=, provided ©(N) > N. In
this paper, we will take ®(N) = N In(N + e).

Next, we present the following well-know commutator estimate and we can find the details in [8]
for example.

Lemma 2.1. Suppose that s > 0 and p € (1,0). Let f, g be two smooth functions such that Vf € L',
ASf e LPs, N7'g € LP? and g € L, then there exist a constant C independent of f and g such that

ILA®, flgllr < CUV Fller A gl + IA° flles llgllrs) 2.1)

with p2, p3 € (1, 00) such that

1 1 1 1
—t+—=—+ —.
P P2 P33 D4

1
p
Here [A’, flg = A°(fg) — fA'g.

Next, we give the following logarithmic Sobolev inequality which plays an important role in the proof of
the blow-up criterion for the classic solutions.
Lemma 2.2. Let m > %, then there exists constant C depending only on s, p and © such that

llullz ey < C(1 + lfully, @(Un(|[ullgmes) + €))) (2.2)
for all u € H™(R?).

Proof. By using Littlewood-Paley theory, we decompose the function into three parts. More precisely,
we write

u(x) = Z AJ,-L{ = 1w (x) + t,(x) + 1p(x) (2.3)

JEZ
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where

w(x) = Z A, (%) = Z Au and  u,(x) = Z Aju. (2.4)
j<-N —-N<j<N >N
For the low-frequency part u,;(x), we can show that
(Il < )" MAulle < D C27 Al < € ) 22 ullz < C273N e, (25)
Jj<—N Jj<—N j<—-N

For the high-frequency part

(9l < Y 1Al

=N

<> C2Aul

=N

=C ) 29I|A 22"
=N
< C27 DNy, (2.6)

for s > %, where we have used the following Bernstein estimate

. = g WL L .
1A ullym < C2“P 32| Ajullyn, for 1< py < py< oo,

and the norm equivalent between || - || and || - || B,
Next, we consider u,,(x), by definition 2.1 we have

N
e, (|| < Z 1A julles < ON)lullys, - (2.7)
j=N
Taking from (2.3) to (2.7) into consideration, we get
(@)l < CQ ¥ Nlutlls +27732N ]| s + O(N)ully,)- (2.8)

If we take N = [%] + 1, where [ -] denotes Gausss symbol, then we have the desired
estimate (2.2). O

Now, we state our main results.

Theorem 2.1. Suppose v > 0, k = 0 with (ug, 6y) € H*(R*) x H*(R?). Let T > 0 be the maximum time
such that (u, 6) be a local smooth solution to the system (1.1). If T < oo, then

lim sup((lu(O)llr= + [16(D)||r-) = o0, (2.9)
i/ T

if and only if
T
f IVully,d7 = oco. (2.10)
0
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Remark 2.2. For the zero-diffusion case, that is, v > 0, k = 0, the stiuation becomes more difficult. The
main obstacle is that the temperature 0(x, 1) in the transport equation does not gain any smoothness.
Hence, the blow-up issue of the zero-diffusive Boussinesq equations is more difficult than that of full
viscous Boussinesq system. The result (2.10) is an improvement of (1.5) in [21].

Remark 2.3. After some slight modifications, our methods can also be applied to the zero-viscosity
case, that is, v = 0,k = 1. More precisely, J» and K> in (3.10) and (3.15) can be estimated as

h<C (”VHHL‘“”VZQHiz + ||V“||ém||vu||%z”VBHL*‘”VB’g”L?)
<Vl +C (”V“”L‘Mllvzglliz + IIVullellull,fzIIVZulliIIGIIU»IIVZGIIL:)
< V2612, + ClIVullz (V2612 + IV2ull?, + 1), (2.11)
similarily
Ky < C(IIVull2 IVl IV°0ls + 1Vl 29260151V 6l o + [ Vull 1961 )
<IIV*0II3. + ClIVull (V2615 + IV2ully, + 1). (2.12)

Remark 2.4. From the Biot-Savart law, we have ||Vully, < CIIVzA.'ll,;go!oo < Clwllgo, . which refined the
results in [9, 10].

Remark 2.5. For the nonhomogenous case, our space becomes Vg = {u € S'(R?); [y, < oo}, where

A =3 A,
o T e O(Y)

Then our results is an improvement of (1.6) in [20], since

EN:_ Aju,.. A u|p-
N>2 Nlll(N + 6) 2<g<oo lnq i

Moreover, we give the following function for example

f(x) =log (i + e) log log (i + e) € Ve,

|x] |x]
but does not belongs to B°, _, please refer to [17, 20] for details.

00, 00?

3. Proof of theorem 2.1

Proof. We consider the 3D Boussinesq equations (1.1) with v > 0, k = 0. It is easy to see that (2.10)
implies (2.9), since ||Vully, < C||Vull, < Cllu(dlly:. Hence, we only need to prove that (2.9) implies
(2.10). If (2.10) is false, then there exists a constant C such that

T
f [Vully, dr < C. (3.1)
0
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Multiplying the second equation of (1.1) by u and 6, respectively, integrating and using the divergence-
free condition V - u = 0, we immediately have

lu@®llz2 < C (lluollz2 + 1l6oll2) , 162 < [16ollz2, (3.2)

for any 7 € [0, T']. Furthermore, we have ||6(¢)||;» < ||6o]|.», for p € [2, oo].

Next, we are going to give H', H* and H* estimates to complete our proof.

(H' estimate). Multiplying the first two equations of (1.1) by Au and A6, respectively, after inte-
grating by parts and taking the divergence-free property into account, we have

1d
5 VU, + VOO + V(o)

= (u-Vu) - Audx + (u- V) - A8dx — f (Be,) - Audx
B3 R R?

=L+5L+1 (3.3)
After integrating by parts several times, one can conclude that the three terms above can be bounded as

I, = (- Vu) - Audx

Rr3

= — 8k(u;65uj)3kuj dx

R}
= —f Bkui&-ujakuj + u;aié‘kujékuj dx
R}
< ClVulloo| [Vl (3.4)

Similarly, we have
L= Ls(u -VO) - Abdx < CIIVuIINIIV(JIIiZ, (3.5)
and for the third term, we can show as
L=— | (8e) Audx < |IVO)l2||Vull2 < [IVOIT, + Va7, (3.6)

Plugging the estimates (3.4), (3.5), (3.6) into (3.3), we arrive at

1d

EE(IIVM(I)IIEZ +IVO@IIZ.) + Va7,

< ClIVullalIVull?, + ClIVulloIVOII7, + [1V617, + Vull7,

< C(1 +[Vullo)(IVull7, +1IVII7). (3.7)
(H? estimate) applying V to the first two equations of (1.1), respectively, integrating and adding

the resulting equations together it follows that
1d

3 dI(IIVzu(I)IIiz + V2017 + IV w7,

=—f Vz(quu)-Vzudx—f Vz(u-VH)-Vzﬂdx+f V2(Oe,) - Vudx
R3 R3 R3

=N+ + s (3.8)
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In what follows, we will deal with each term on the right-hand side of (3.8) separately below

Jl:_f V2(u.vu).vzudx:—f[Vz,u'V]u-Vzudx
R3 R?

<V, - V]adl 2| Va2
< ClIVullolIV2ull} (3.9)

LZ )
where we have used the Lemma 2.1 commutator estimate.
Jr = —f V3(u- Vo) - Vadx
R3

< IV3ull2IV6I17, + [IVull- 1196117,
< C(IIV3u||Lz||9||LmIIVZHIILz 5 IIVuIILoeIIVQGIIiz)
< IV2ull?, + C (1 + [IVulleo) V70l 2, (3.10)

where we have used the following Gagliardo-Nirenberg inequality

IVOII7, < ClIOll=NIV>6ll2.

The third term can be estimated as

Jsy = f V2(0e,) - Vudx < ||V20)|2|IV2ull2. (3.11)
R3
d
— VUl +IV°60(0)122) < € (1 + Vullo)AIV2ully, +I9611). (3.12)

(H* estimate) applying V° to the first two equations of (1.1), respectively, integrating and adding the
resulting equations together, it follows that

1d
EE(IIV%(:)II% + IV + IV u@)Il?,
= —f Vi(u-Vu)-Vudx - f V3(u-Vb)-Vbdx +f V3(Ge,) - Vudx
R3 R3 R3
=K + K + K. (3.13)
K;(i = 1,2,3) can be bounded as

K;z—f V3(u-Vu)-V3udx=—f[V3,u-V]u~V3udx
R3 R3

I0V?, 2 - Va2 11Vl 2

<
< ClIVullol VP ull 72, (3.14)

and
K, = —f Viu-Ve) - V0dx
R}

< C (IVull 2192611+ + 19°ull o[ V26 V6 + [Vl (V61 2,)
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< C(IV*ull 216l V62 + [V ull V0112, )
< IVHully, + C (1 + [[Vullo) IVl 2, (3.15)

where we have used Young’s inequality and the following Gagliardo-Nirenberg inequality in the three

dimension
3 1 il 5
IVOl|s < CIIBIIEWIIVE;GHEE, V26l < C|I9||Zm||V39llzg,
2 $ no3as 2 3 uesons
IV=6llz2 < ClOINV7OI,,  1IV76llzs < ClEISNIV76ll,,
and

IV3ullzs < ClIV*ulle.
The third term can be estimated as
K; = f 3 V3(8e,) - Vudx < ||V 2|V ull 2. (3.16)
R
Combining the above estimates into (3.13), we get

d
E(I|V3u(f)lliz +IVO)I7,) < C(l + IVl o)1V ull7, + |IV39||iz)- (3.17)

Taking (3.2), (3.7), (3.12), (3.17) into account and adding them up, integrating the resulting inequality
from 0 to T, which together with Lemma 2.2, we can infer that

i
In(M(T) +e) <In(M(@QO) +e)+ Cf (I +[[Vully,) InIn(M(7) + e) In(M(7) + e)dTr, (3.18)
0

where M(¢) = rn[%tx]( ||u(‘r)||§f3 + ||b(1')||‘2q3) for any 7 € [0, T']. Then, we take use of Gronwall’s inequality,
Te[0.f
finally we have
T
In (M(T) + ¢) < exp { expC f Vully, dr}.
0

Therefore, we get the boundness of H* x H*-norm of (u,6) for all ¢ € [0, T] which leads a contra-
diction, this completes the proof of Theorem 2.1. m
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Results on spirallike p-valent functions
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In this paper, we introduce two new subclasses of p-valent spirallike functions of order a. We prove
necessary and sufficient conditions for these newly defined classes and also point out someknown
consequences of our results.

Keywords: spirallike function; p-valent function; necessary and sufficient conditions

‘1. Introduction

\
Let A(p) denote the class of all functions fdefined b

‘ (2]

| f@ =2+ Zan+,,z"+” (peN=1,2.3.) (1.1)

| " |
‘WhiCh are analytic and p-valent in the unit disk |
\ g |
| E={zeC:[z <1}

For a real number a (0 <a <p)the well-known subclasses S*p (o), p-valently starlike functions of order

‘(x and C (a), p-valently convex functions of order o.of A(p) are given by

‘ 4
| S p) = &waw%ff@)ML @e@}
| f@
C 5 —
e f@

For 3] < Zand 0 < @ < 1, afunction f € A is said to be -spirallike of order @ in E if
| :
| R {e‘ﬂzf (Z)} >acosf  (zeE). (1.2)

‘ f(2) ‘

The class of all such functions is denoted by §;(a) [3], (also see [5, 14, 15]). In recent years many,

|

\

'’ ‘
{feA(p):%(HZf (Z))>a, (zeE)}. |
|

|

|

interesting subclasses of analytic univalent, multivalent and spirallike functions and their many special

cases were investigated, see for example[1,2,6,7,8,9, 10].
\

H\/Iotivated and inspired by the above mention work, we here define the following.
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Definition 1.1. A function /'€ A(p) belongs to the class S (a, p) if it satisfies the inequality

|
(p=1) 1 1
Z
| & < —, 7€ E’
| 2
|
forsomereal fand 0<a <1, where f{’")(z)is the p” derivative of f (z).

e"ﬁzf(}?) (Z) 2

‘where M(a) is a function class introduced and studied in [12]. Secondly, we have

p=1 and B=0,50(a,l)= M),

| p=1 Sglal)=Sg),

‘where S g(@) is a function class introduced by Owa and Kamali [13].

‘Deﬁnition 1.3. A function f € A(p) is said to be in the class Cg(a, p) if it satisfies the inequality

| & ot 8 E 1.3)!
| B (zfP(z)) 2a i 2a° e 5 )‘

\
\
\
\
\
|
Remark 1.2. First of all, it is easily seen that, for |
\
\
\
\
|
\
\

for some real $and 0 < a < 1, where f%)(z) is the pth derivative of f(2). |

| As a special case, the class C pla, 1) = Kg(a), is introduced by Owa and Kamali [13]. Using|
essentially their technique, we prove the main results for the classes S (e, p) and Cg(a, p) which is thel
main motivation of this paper.

|
2. Preliminary results

|

‘Lemma 2.1. [4]. Let ¢(u,v) be a complex-valued function such that

\ g:D—=-C, DcCxC

satisfies each of the following conditions

1. ¢(u,v) is continuous in D;

2. (1,0) € D and %{qb(l,O)} > 0);
(L+ud)
S

3. Rid(ws, vy)} < 0 for all (tus, vy) € D such that vi < — Let

p@D=1+piz+ p2z2 + ...

(p(2),zp'(2)) € D, forall z€E.

If

\

|

\

|

\

| be analytic (regular) in the unit disk E such that
\

|

| R {4 (p@.2p' (@)} >0, then R{p@)}>0 (z€E).
|

\

p. Main results

'Theorem 3.1. A function f € Sg(a, p) if and only if, R (e‘ﬁ ;j:,(,p:,((“j)) > .

\
\
|
\
|
|
C being the complex plane and let u = uy + wsand v = vy + tvy. Suppose that the function ¢(u,v)
\
|
\
|
|
\
\
|
\
|
|
\
\
|
\

|
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\Proof. Let f(z) € Sp(a, p), then we can write

| 1 1
-—|< — E
ePF(2) 20‘ 5 2 GRS
where F(z) = ;'(f ,( 2 From above, we have
2a — ¢PF(z) = 1
2aefF(7) 2a

& Pa- e FQ| < (e#FR)

& [2a - e‘ﬁF(z)] [m] <(¢*F(2) [W(z)]

= [2& - PF (z)] [2a e m] = (e‘ﬁ i (z)) [ef"B %]
© 4a® - 2ae PF(z) - 20’ F(2) + FQ)F(z) < F(R)F(2)
o 4a® - 2a (e“ﬁm +e?F (z)) <0

e 2a -2R(e?F(2)) <0

o 2R(€?F(2)) < 2a

5 zfP@)
o ‘R( ﬁf(P 1)(2)) >

This complete the proof. m]

\
\
\
|
|
|
\
\
\
|
\
|
\
\
\
|
\
|
\
\
\
' When p = 1 we have the following known result proved by Owa and Kamali [13].
|

‘Corollary 3.2. f(2) €Sp(a) if R (e"ﬁz_ff:;—ﬁ?) e

'Theorem 3.3. If f(z) € A(p) satisfies

‘ (5.}

\
|
for some |B| < 5 and 0 < a < cos B, then f(z) € Sp(a, p).

n +1+ I(n +1) - 20(87060

nip| < 1= |1 = 20e™ (3.1)

‘Proof. If f(z) € Sg(a, p) then, it suffices to show that

20 — e®F(z7)

1
FFQ |

2/ P(2)
f(pfl Nz)"

for some || < 7 and 0 < @ < cos B, where F(z) =

Now we have
2a — e*F(2)
e®F(2)

Zoe byt W10
Zf(]:') (Z)




2 -1+ 37, Ezfg: (2&8""’3 —(n+ 1)) @y pZ”
l £ Zn 1 ii:’:; (I’l + 1)(1n+p2"
|2ae v l| + 20y E::'l?‘ (2(1’6’_""8 —(n+ 1))‘ a"ﬂ’l 12|
1= 3, B (n+ 1) [ans,| 27
Il — 20{8"‘8| + 3y EZ:?, |(n +1) - 2ae Lﬁl anﬂ?l |
v
1= Z & 1+ D [ |
'The last expression in (3.2) is bounded above by 1 if |
\ o0 |
B (p+n)! B (p+n)!
\ |1 —2ae |+ Z; PEETY |( 1)~ dnve ||an+,,| <1- Z ! |(n + 1)an+p|' (3.3)
| i \
‘After simplification of (3.3) we have |
| Z(p+n)’ +1+|(n+1)—2cre_‘ﬁ|)}|a |<]—|1—2cxe_"‘8|. |
| 1)! S |
‘Therefore, f(z) € Sp(a, p) for some |B] < 5 and 0 < a < cosf. D‘
\ |
When 8 = 0 and p = 1, we have the following result proved by Owa et al. [12]. |
Corollary 3.4. Let 0 < @ < 1. If f(2) € A satisfies the following coefficient inequality ‘
" ’ a; (O <a< %) \
D, (n=)la) < 5 (1|1~ 2a]) = |
n=2 -z (3<a<]) |
ithen f(z) € M(a). |
Taking g = 7 in above Theorem we have the following result. |
‘Corollary 3.5. If f(z) € A(p) satisfies |
| |
= !
\ HZ_;E‘S:T;(J@+1+\/(n+1)2—2\/§a(n+l)+4af2) an+p|51—\/1—2\/§a+4o:2
\for some 0 < @ < = Y2 then f(2) € Sz(a, p). \
'Theorem 3.6. Let the function f(z) defined by (1.1) be in the class S g(a, p) and let |
|
1
0<1_W 0<Q<C()Sﬁ. (3.4)‘
Then we have . ] |
el (p)~* |
E). .
‘R{( . Sy A (3-3),
\
Proof. If we put
|
" 2A(cosB—a) + 1 |
|
|
77777777777777777777777777777777 ‘
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‘ (f(pl}(z)
\ plz

AeB
) =(1-A)px)+A (3.6)

'where A satisfies (3.4) then p(z) is regular in the unit disk E and p(z) = 1 + p,z + pr2® + ...
Logarithmic differentiation of (3.6) yields

|
|
|
|
|
| |
| /Ie‘ﬁ[f(p)(Z) 1]—(1—A) P |
|
|
|
|
|

‘ oG z| (1-A)pi)+A

IThis can be written as

that is from (3.6)

(p) ’

| R R (1 - A) 2p'(@) ,

| fPD(2) A{(1 - A)p(z) + A}

equivalently

(p) 7

| il » P’ (@) |

‘ =it e (3‘7)‘

Since f(z) € Sg(a, p) then from (3.7) we have \

| ") |

p'(z

\ RieP—a+(1-A }>0, 7€ E,0 < a < cosp). \

| { =D = mp@ + 4 ( i |

Let us consider the functional #(u, v) defined by |

| |

0 =e¥ - 1-4

| W)=t —a+ = = Aur Ay |

| |

where u = p(z) and v = zp'(z). Then 6(u, v) is continuous in D = ((C - [ﬁ}) A \

Also, (1,0) € Dand R {6(1,0)} = cos B—a > 0. Furthermore, for all (tu,v,) € D such that v, < —(HT“%),\

we have |

| |

Vi
RO, — - RI(1-A

| (6, v} = cosf—a+ {( o _A}m2+A]} |

| A(l = A, |

| = cosf—a+ |

y| [(1 — A + A2]
| |
AL = A)(1+:22)

| < cosf—a— - |

| 221 - Ay + A2] |

| A2 [4/12((;05 B—a) - 1] 12 |

| = (cosf—a) ‘

[(1 — A + A2]
| |
= ol ‘

|

because 0 < @ < cos 3 and 44%(cos B — @)® — 1 < 0 implies that A < m |

Therefore, the functional 6(u, v) satisfies all the conditions of Lemma 2.1.This proves that R {p(z)} > 0, |
|
|
|
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% f(ﬂ—l)(z) e S (p!)—/le’ﬁ
2A(cosf—a) + 1

This completes the proof. O

For 5 = 0 and p = 1, in above theorem we have the following known result given by [11].

Corollary 3.7. Let f € A be in the class Sy(a,1) and 0 < A < ﬁ, 0<a<0then

@\ 1
%( 2 ) T L

Theorem 3.8. A function f € Cg(a, p) if and only if

‘R{e‘ﬁ(l + w)} >

\
\
\
\
\
|
|
|
|

‘Pmoﬁ Let f(z) € Cg(a, p), then we can write
|

1 1 | - 1
efG(z) 2al 2a
This can be written as

1 1 ’ - 1 20 - ¢*G(z) Sl

eFG(z) " 2a 2a 2ae$G(2) 2a

|2cr — P G(z)|2 < (6“8 G(Z))2

(20 - ¢#G(2) 2a - ePG) < (¢¥G(2)) (PG(2)
(20' — ¥ G(z)) (20 —e ¥ @) < (e"‘ﬁ G(Z)) (e"‘sﬁ)
4o - 2a [e_L’B G(z) + ¥ G(Z)] + G(2)G(2) < G(z)G(2)
40’ - 2a[e*G() + €G(2)| < 0

2a |20 - R (¢”G(2))| < 0

2a - 2R (¢#G(2)) < 0

. Zf(,le)(Z)

This completes the proof. ol

¢t ¢ 0 ¢ ¢ C O

g

Theorem 3.9. If f(z) € A(p) satisfies |

Z (p :!n)!

n=1

[n +1+ |(n +1)- 2&(3"‘8” Iampl <1- |l —2ae™# (3.8)‘

|
|
‘ ]
\
|



|for some |B| < 5 and 0 < a < cos B, then f(z) € Cy(a, p).
‘Proof. To prove that f(z) € Cg(a, p) we need to prove that

2a — e?G(2)

G < (3.9)

" 0G)
. . . i)
For this consider the left hand side of (3.9), we have

for some |8 < ’—220 <a<1,where G(z) =1+

2a — e8G(2) 2ae B fP)(z7) — ( FP() +z f(’””(z))
e‘ﬁG(Z) (f(P)(Z) + Zf(.'Hl)(Z))
2a — €*G(2)
e¥G(2) P o) fPO))
- n=1 (n+1)!
1+ T, &5 (n + 1) |ane,

1- 2@@“ﬁ| T Dl o [ 1§17

n=1 (n+1)!

|(n +1)- 2ae“ﬁ|

1 - ZDO (p+?’-‘)! (n + 1)2

n=1 (n+1)!

an+p|

The last expression is bounded above by 1 if

(n+ 1)

|

|

|

|

|

\

|

|

|

|

|

2ae B fP)(z) — (f(”)(z) ig zf("””(z)) |

|

|

|

|

|

\

|

|

i |

|1 - 2cxe_‘*B| + Z il |(n +1) an+p| |(n +1)-2ae™® |
n=1

|

W(P"'n)! 2
= l_nz_;(nu)!(””)

\

\

\

\

|

\

\

\

\

\

\

| Qae B -1+ 3y L,y Dan,20e —(n+1)
\

\

\

\

|

\

\

\

\

| | (3.10),
\

for some |8 < § and 0 < a < 1. After simplification, inequality (3.10) can be written as

an+p

| Z (P ;n)! {n +1+ |(n +1)- 206“5” 28 |1 - 2ae_‘ﬁ|.

‘ n=1

This completes the proof. m|

| When we take p = 1, we have the following known result given in [13].

Corollary 3.10. If f € A satisfies

\
ffor some |B] < § and 0 < a < cosf, then f € Kz(a).

[Ms

[n (n - |n - 2afe_‘ﬁ|)} la,l < 1— |] — Qa,e—tﬁl

1l
[Se]

n

Corollary 3.11. Let 0 < < 1. If f € A satisfies the following coefficient inequality

\
|
\
|
\
|
\
\ \
| Taking p = 1, 8 = 0 in above theorem we have the following result given in [12]. |
\ |
\ \
|
\
|
\
|



o ] a; (0<a$%)
2 (= a)a] < 5 (1-]1-2a)) =

n=2 1 —a; (l<o:<1)

then f(z) € N(a).
Taking B = 7 in above Theorem we have the following result.

Corollary 3.12. If f(z) € A(p) satisfies

Z (p ;”)! (" +1+ \/(n +1-2V2a(n +1) + 4“2) Jtns|
n=1 )

< 1- \/1—2\Eac+4a’2

for some 0 < a < VTE, then f(z) € S z(a, p).
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ABSTRACT

The spectrum of one-dimensional repulsive Hamiltonian with a class of perturbations Hp =
T . V(x) in LP(R) (1 < p < o0) is explicitly given. It is also proved that the domain of H), is

1
dx*

embedded into weighted L?-spaces for some g > p. Additionally, non-existence of related Schrodinger
(Co-)semigroup in L”(R) is shown when V(x) = 0.

Keywords: repulsive Hamiltonian; WKB methods

1. Introduction

In this paper we consider

&
H = —ﬁ—x +V()C) (l)
in LP(R), where V € C(R) is a real-valued and satisfies V(x) > —a(l + x?) for some constant ¢ > 0 and
V(x|
dx < oo, (2)
R V14 x?2

The operator (1) describes the quantum particle affected by a strong repulsive force from the origin. In
fact, in the classical sense the corresponding Hamiltonian (functional) is given by f7 (x,p) = p2 — x?
and then the particle satisfying % = 9,H and p = -9, H goes away much faster than that for the free

Hamiltonian Ay(x, p) = p2.

In the case where p =2, the essential selfadjointness of H, endowed with the domain C;°(Q),has

been discussed by lkebe and Kato [7]. After that several properties of H is found out in a mount of
subsequent papers (for studies of scattering theory e.g., Bony et al. [2], Nicoleau [10] and also Ishida
[8]).

In contrast, if p is different from 2, then the situation becomes complicated. Actually, papers which deals

with the properties of H is quite few because of absence of good properties like symmetricity. In the L’-
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framework, it is quite useful to consider the accretivity and sectoriality of the second-order differential
operators. In fact, the case —% + V(x) with a nonnegative potential V'is formally sectorial in L’, and
therefore one can find many literature even N-dimensional case (e.g., Kato [9], Goldstein[6], Tanabe
[14], Engel-Nagel [5]). However, it seems quite difficult to describe such a kind of non accretive
operators in a certain unified theory in the literature.

The present paper is in a primary position to make a contribution for theory of non-accretive
operators in L” as mentioned above. The aim of this paper is to give a spectral properties of
H = -4 — x? + V(x) for the case where V(x) can be regarded as a perturbation of the leading part

dx

s x%; note that if V(x) = [log(e+|x])]™® (@ € R), then a < 1 is admissible, which is same threshold

T d
d

as in the short range potential for ——22 — x? stated in Bony [2] and also Ishida [8].

dx

Here we define the minimal realization H,, i, of H in L = LP(R) as

D(Hp,min) = C(D)O(R)a

H

(3)
pmin(X) 1= —u"(x) — xX2u(x) + V(x)u(x).

Theorem 1.1. For every 1 < p < co, H, i, is closable and the spectrum of the closure H), is explicitly

given as
2 ‘}
1——|¢.
4

Moreover, for every 1 < p < g < oo, one has consistence of the resolvent operators:

o(H,) = {/1 €C; |ImA <

(A+H,)'f=(@+H) 'fae.onR YAepH,)NpH,), VYfeL nLi

Remark 1.1. If p = 2, then our assertion is nothing new. The crucial part is the case p # 2 which
is the case where the symmetricity of H breaks down. The similar consideration for —;% + V (but in
L?-setting) can be found in Dollard-Friedman [4].

This paper is organized follows: In Section 2, we prepare two preliminary results. In Section 3, we
consider the fundamental systems of Au + Hu = 0, and estimate the behavior of their solutions. By
virtue of that estimates, we will describe the resolvent set of H,, in Section 4. In section 5, we prove
never to be generated Cy-semigroups by +iH, under the condition V = 0.

2. Preliminary results

First we state well-known results for the essentially selfadjointness of Schrodinger operators in ~

L*which s firstly described in [7]. We would like to refer also Okazawa [12].

Theorem 2.1 (Okazawa [12, Corollary 6.11]). Let V(x) be locally in L’ (R) and assume that V(x) >—c' —

c,[x*, where c1,c2>0are constants. Then H, . is essentially selfadjoint.

,min
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Next we note the asymptotic behavior of solutions to second-order linear ordinary differential equations
of the form

V(%) = (@(x) + P(x))y(x)
in which the term ¥(x)y(x) can be treated as a perturbation of the leading part ®(x)y(x).

Theorem 2.2 (Olver [13, Theorem 6.2.2 (p.196)] ). In a given finite or infinite interval (a,,a,), let
a € (ay, a»), Y(x) a positive, real, twice continuously differentiable function, Y (x) a continuous real or

1 d? | Y(x)
F(X):f CD(x)““E(CD(x)U“)_(D(x)1f2 dx.

Then in this interval the differential equation

2
W D) + PO

dx?

has twice continuously differential solutions

complex function, and

such that

1
d(x)!/2
provided that ‘V,, (F) < co (where V, (F) = le’(t)l dt is the total variation of F). If ¥(x) is real,
then the solutions w(x) and w,(x) are complex conjugates.

1 :
le5(l, |ﬁﬂsaﬂ§%ﬂn}4 (G=1,2)
For the above theorem, see also Beals-Wong [1, 10.12, p.355].
3. Fundamental systems of Au — u” — x*u+ Vu =0

3.1. The case A e R

We consider the behavior of solutions to

Au(x) — u” (x) = Xu(x) + Vxu(x) =0, xeR, (4)
where 1 € R.
Proposition 3.1. There exist solutions u, 1, U2 of (4) such that u,; and u,» are linearly independent
and satisfy
i) < Col+1x)72, o) < Co(1+ x> VxeR,
where 4 € R.

Proposition 3.1. There exist solutions u, 1, u,2 of (4) such that uy, and uy, are linearly independent
and satisfy

(O] < CoL+ 1272, o) < Ca(L+ )7 VxeR,
1 1 1 s A
lez2,1 ()| = 5(1 +xD72, Juaa(x)] = 5(1 +x)72 Vx =R,

Jor some constants Cy, Ry > 0 independent of x. In particular, u,, uy2 € LP(R) if and only if 2 < p <
0o,

Proof. First we consider (4) for x > 0. Using the Liouville transform
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L

Wy) = (29)tu ((Zy)%) . or equivalently, u(x) = x" v (%) !

we have
: IR AT T L T - B
L= % V(E) =u"(x) — V(x)u(x) = x2v (5)+ Zx V(E) X ~V(x)v(5).
Therefore noting that y = x%/2, we see that
AV 2-3 V()
v”(y):[—(l—él—) #5220  HOD )]v(y):@@)wof))v(y). (5)
y 16y 2y

Here we have put for y > 0,

-3 V(@)
16y? 2y

q 2
<D<y):=—(1—4—), W(y) =
Y

Let
2

1 d 1
1(y) := [O(y)| (—ﬁ + ‘P(y)) @G F, ¥y = A, := max(,0).

Then we see that for every y > A.,
A\ 32 A A A\ 2 - VYD) M, |V((2y)?
o< (1o AV 32 o (12 A)T A L (o A) IR, vephl M Vel
4y]  64y° 4y] 4y3 4y 16y? 2y ¥ 2y

where M is a positive constant depending only on A. Therefore

f II(y)| dysM,{f —2dy+f L2 -
A PR vaa, X

Thus IT € L'((A,, )). By Theorem 2.2, we obtain that there exists a fundamental system (v, ,v,,) of
(5) such that

vy te™ = 1, vy e’ -1 as y— oo

(see also [11]). Taking u, ;j(x) = x‘livfl,j(xz/il) for j = 1,2, we obtain that (u,,u,) is a fundamental
system of (4) on (4., o) and

i 2

i 2 . o 5
u Xt T - 27, u(nxiildT - 21,
as x — oo. The above fact implies that there exists a constant R, > A, such that
1 3 .3 :
=X 7 S|H/1,j(x)|<§3f 2. w=ky g=L12

We can extend (u,.u1,2) as a fundamental system on R. By applying the same argument as above to
(4) for x < 0, we can construct a different fundamental system (i, 1, it 2) on R satisfying

1 3 "
W <lal < ki, x<-Ri j=1.2.
By definition of fundamental system, u, ; can be rewritten as

up1(x) = cnity1(x) + caita2(x),  ua2(x) = e21itg,1(x) + cita2(x).

Hence we have the upper and lower estimates of u, ; (j = 1, 2), respectively. m]

3.2. Thecase A€ C\ R

We consider the behavior of solutions to
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Au(x) —u”(x) — Xu(x) + Vxou(x) = 0, (6)

where A € C\R with Im A > 0. The case Im A < 0 can be reduced to the problem Im A > 0 via complex
conjugation.

3.2.1. Properties of solutions to an auxiliary problem

We start with the following function ¢,:

wa(x) := x'l?ie"%, x> 0. (7)
Then by a direct computation we have
Lemma 3.2. ¢, satisfies
Apr =@ = Xpa+ gapa =0, x €(0,00), (8)
where g (x) := w, x> 0.

Remark 3.1. If 2 = i or A = 3i, then ¢, is nothing but a solution of the original equation (6) with
V=0.

Next we construct another solution of (8) which is linearly independent of ¢,. Before construction,
we prepare the following lemma.

Lemma 3.3. Let A satisfy Im A > 0 and let @, be given in (7). Then for every a > 0, there exists F! € C
such that

f c,o,;(r)_2 dt — F;’ as x — oo
a

and then x — J: @a(f)2 dt — F is independent of a. Moreover, for every x > 0,

f QDA(I)_Z dt — F;} - %)c'h-g_'.)“2 < CAx—lm,{—z’

2
where =1+ V() |
m

Remark 3.2. If a = 0 and A = i, then F("] gives the Fresnel integral lim,_,c Ox P ST T R F("] =

Va/8(1 - ).

Proof. By integration by part, we have

* i e-le e ( i et e—uz _ i at e—mz) g ﬁ ( A2 e—.r:x2 _ gh2 e—.r,'az) _ A -2) (7 i3 e—.r:r2 dr
a 2 2 4 4 s )
Noting that -3¢~ is integrable in (a, c0), we have

fx t1+fue-.r:r2 dr — _ia,iie-mz = faix‘—ze—ml _ Ai(di - 2) fm rn‘-se-az ¥ - F;}
N 2 4 4 a
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as x — co. And therefore [ *fi+lig=i dr — F1is independent of a and

X .
c il 1 .2
tl+,he—u dr — F;l _ _x,he ix

b 2

A ; AQAi-2) [ ;5 2
= |Z/\c_‘l'2e"”‘2 + ) ; ) f e d!‘ S 5% g

This is nothing but the desired inequality. m|
Lemma 3.4. Let ; be as in (7) and define s, as

1
a(t)?

a(x) 1= @) f ' dt - Flgy(x), x> 0. 9)

Then s, is independent of a and (¢a,¥,) is a fundamental system of (8). Moreover, there exists ay > 0
such that

1 Im A+1 ImA+1
§x_ T a2 x T, x€lag, ™).

Proof. From Lemma 3.3 we have

Im.+1 i -4 a2 ImA+1 i 1 P e lisda 2
x 2 [x)—=x2e'T|=x 2 |p(x) f dt — F* = —xte™ | < Cix2.
2 o Pa(t)? ¢ 2
Putting ay = (6C ,1)%, we deduce the desired assertion. O

3.2.2. Fundamental system of the original problem

Next we consider
w—-w —xXw+gw=gh x>0 (10)

with a given function h, where g, is given as in Lemma 3.2 and g, := g, — V. To construct solutions of
(6), we will define two types of solution maps & — w and consider their fixed points.

First we construct a solution of (6) which behaves like ¢, at infinity.
Definition 3.5. For b > 0, define

Uh(x) := ¥na(x) = da(x) [ @a(5)8a()h(s) ds — @a(x) f Ya(5)8(s)h(s)ds, x € [b, )

b

for h belonging to a Banach space

X (b) := {he C([b,00)) ;s sup (x™2" |h(x)]) < oo}, lllx, == sup (x™=7h(x)]).

x€[b,00) x€[b,o0)

Remark 3.3. For arbitrary fixed b > 0, all solutions of (10) can be described as follows:

Wer.er (1) = C102(x) + cotfa(x) + I (@axWa(s) = @a(sWa(x))2a(s)h(s) ds.

where ¢i,c; € C. Suppose that & € C7((b, o)) with supph C [by,by]. Then we, ., € C([b,0)). In
particular, for x > b,,
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bg

ba
%(S)g’,z(t?)h(S)dS) @a(x) + (Cz - f @a(8)8a(s)h(s) dS) Ya(x).
b

WC|,(‘2(x) . (Cl +
1

bl
Therefore w,, ., behaves like y, (that is, w,., ., € X;(b)) only when

b

cr=— | YaSEh(s)ds = - : Ya(5)8a(s)h(s) ds.

b|
In Definition 3.5 we deal with such a solution with ¢, = 1.
Well-definedness of U in Definition 3.5 and its contractivity are proved in next lemma.

Lemma 3.6. The following assertions hold:

(i) for every b > 0, the map U : X)(b) — Xa(b) is well-defined,
(ii) there exists by > 0 such that U is contractive in X,(b;) with

1
|Uhy — Uha|lx,) < g”hl - x>, hi.h2 € Xa(ba)

and then U has a unique fixed point wy € X (b,);
(iii) w, can be extended to a solution of (6) in R satisfying

1 _Imi+] _Imd+l

Ex T < wix) £2x T, xe€|[by, o).

Proof. (i) By Lemma 3.4 we have ¢, € X,(b). Therefore to prove well-definedness of U, it suffices to
show that the second term in the definition of U belongs to X,(b).
Let h € X;(b). Then for x € [b, o0),

Im A+1

x 2

@a(x) f wa(8)g(s)h(s)ds

OO0
Im2 —ImA-1~ g
<x" IIhlle sTNga(s)| ds < lhllxlls™ &allL o)
fi 3

and

ImA+1
Xx 2

%(X)f @a(8)g($)h(s)ds Sllhlle 57 1Ba(s)l ds < [hllxlls™ ZallLi.00)-
b b

Hence we have Uh € C([b, o0)) and therefore Uh € X,(b), thatis, U : X(b) — X, (b) is well-defined.
(ii) Let iy, h, € X,(b). Then we have
Uhi(x) — Uha(x) = —ta(x) f @a(9)ga(5)(h1(s) — ha(s)) ds — pa(x) f Ya($)ga(s)(hi(s) — ha(s)) ds.
b X
Proceeding the same computation as above, we deduce

il
|UR — UhZHX,l(b) <2s g/l”L'(b,oo)”hl = hz”x,;(b)-

Choosing b large enough, we obtain ||Uhy — Uhs||x,») < 57 - hollx, @), that is U 1s contractive in
X,(b). By contraction mapping principle, we obtain that U has a unique fixed point w; € X (b).

(iii) Since w, satisfies (10) with 7 = w;, w; is a solution of the original equation (6) in [b, c0). As in the
last part of the proof of Proposition 3.1, we can extend w; as a solution of (6) in R. Since Uw; = w,
and U0 = y,, it follows from the contractivity of U that
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1 1 1
w1 = ¢allx = lUw, = UO||x < §||W1||X < §||W1 —allx + §||¢’,i||x-

Consequently, we have |lw; — ¢,|lx < 47'lyallx < 47! and then for x > b,

_Imdi+l 1 _Imi+]
2

|
w10l 2 ()] = [wi(x) = gra(x)| 2 (5 = — sb,zllx)x 2N

Next we construct another solution of (6) which behaves like ¢, at infinity.

Definition 3.7. Let b > 0 be large enough. Define

Uh(x) := ga(x) + I (Pa(x)a(5) = pa(sWa(x))Za()h(s) ds

for h belonging to a Banach space

Yi(b) = {heC([b, 00)); sup (x T |A(x)]) < oo}a Wiy = sup (x°% 1h(0))

xe[b,00) X€[b,00)
Lemma 3.8. The following assertions hold:
(i) for every b > 0, the map U: Y (b) — Y (b) is well-defined,
(ii) there exists by > 0 such that U is contractive in Y ,(b,) with
- — 1
IUh — Uhally, @) < gllfh = hally,y, M1 ho € Ya(bi)
and then U has a unique fixed point w; € Y (b,);
(iii) W, can be extended to a solution of (6) in R satisfying

1 Imd-1 = Im.A-1
—x 2 <wx)|<2x 7,

x € [by, o).

]

Proof. The proof is similar to the one of Lemma 3.6. m]

Considering the equation (6) for x < 0, we also obtain the following lemma.

Lemma 3.9. For every 1 € C with ImA > 0, there exist a fundamental system (wi,w») of (6) and
positive constants c,, C,, R, such that

Wi < Co(1+ )™, x<0, wi (0] < Co(1 +1x)", x>0, (11)
()] < Ca(1 + )27, x<0, wa(x)] < Ca(1+ )™, x>0 (12)

and
Wil = 1+ 1), x=Ry w21+, x<-R,. (13)

Proof. In view of Lemma 3.6, it suffices to find w, satisfying the conditions above.

Let w. and W, be given as in Lemmas 3.6 and 3.8 with V(x) replaced with V(—x). Noting that w,
can be rewritten as wi(x) = ciw.(—x) + cow.(—x), we see from Lemma 3.6 and 3.8 that (11) and the
first half of (13) are satisfied. Set w,(x) = w.(—x) for x € R. As in the same way, we can verify (12).

Finally, we prove the last half of (13). Since H,,;, is essentially selfadjoint in L*(R), A belongs

AIMS Mathematics (Volume - 10, Issue - 2, May - August 2025) Page No. 28



to the resolvent set of H,, that is, N(1 + H,) = {0}. This implies that w, ¢ L*(R). Noting that

wy € L*((—00,0)), we have w, ¢ L((0, o0)). Now using the representation

wa(x) = cywi(x) + Wi (x), x€R,

we deduce that ¢, # 0. Therefore using Lemma 3.6 (iii) and Lemma 3.8 (iii), we have

|Cz| Im 11 _Imasl > @ lm,zi—l

—2)ei|x7 2

w20 2 leal 1 (0] = el wi (o) 2 —==x >

for x large enough.

4. Resolvent estimates in L7

The following lemma, verified by the variation of parameters, gives a possibility of representation

of the Green function for resolvent operator H in L”.

Lemma 4.1. Assume that 1 € p(ﬁ ) in L?, where H is a realization of H in L7,
u € CS(R), _
wi(x) [~ wa(x) (™

w, ). wo(s)f(s)ds + w, ).

where f == Au—uw' — x>u+Vu e Cy(R) and W, # O is the Wronskian of (wy, wy).

u(x) =

wi(s)f(s)ds, xeR,

Proposition 4.2. Let 1 < p < oo. If |1 — %| < Im A, then the operator defined as

wi(x) [ wa(x) [

wa(s)f(s)ds +

RO == | =

Then for every

wi(s)f(s)ds, feCyR)

can be extended to a bounded operator on L*. More precisely, there exists M, > O such that

-1

2\2
IRCDfllzr = My {Ilmﬂl2 - (1 - ;) l WA llzr,  f € LP(R).
In particular, H, iy, 1s closable and its closure H, satisfies
. z
{/l eC; [ImA] > |1 - —‘} C p(Hp).
4
Proof. Let f € Cg(R). Set

uy (x) 1= wy(x) f wa(s)f(s)ds, ux(x):= Wl(x)f wi(s)f(s)ds.

(14)

We divide the proof of u; € L?(R) into two cases x > 0 and x < 0; since the proof of u, € L?(R) is

similar, this part is omitted.

The case u; for x > 0, it follows from Lemma 3.9 and Hoélder inequality that

0 X
()] < C(1+ )™ [ f (1+1s)™"5 1f ()l ds + f (1+|s|)‘“‘f1|f(s)|ds]
—co 0

ImA+1

%
P
7 1) A llzr (1 + X)) 2

ImA+1

< 2
i
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1
m A+ e m A= U ’ 7 2 ")
+CH1 +|xf) ( f (1 +|sf) "5 P -ep ds)’ ( f (1+|s|)“”’lf(s)l*”ds)
0 0
K

e (Im’1 tlp- ) U lence (1 + a4
i(lm’;_ p —ap 1)_”% (1+|xl)7™ ( f o Isl)‘”’lf(s)l”ds)% (15)
0
with0 < a < % + 1/p’. By the triangle inequality we have
il < C: (”‘"’t L 1)_ (I‘“;* Lp- 1)_'% fllpe + T1(@)
and

(Zi(@) = Cip(lm/;_ lp' -ap’ + 1)_1), fw(l + )% (fx(l + ISI)“”If(S)I"’dS) dx
0 0

P

(ma-1, ., X?
= Cif ( 5 p —ap + 1) (ap)™ f Lf(s)P ds.
0
Choosing @ = -5 (%ﬁp’ + 1), we obtain

i . -3
r ImA-1 1
p- 1) 1A llzr@ ) + C,zz( 5 17) f e, )-

|
ImA+1 , T (ImA+1
s || r e,y < Cﬁ( P - 1) (
The case u; for x < 0, by the same way as the case x > 0, we have

P

Ima+1 e b
el p’—ﬁp’—l) ’ (1+|x|)"+‘6pf (1 +|sDPPIF(s)I” ds, (16)

2

(O < C3F (

where 0 < 8 < % - ﬁ Taking 8 = ﬁ (%p’ - 1), we have

Imi+1 1)\
||u.||U)(MSCi( > —;) Il

Proceeding the same argument for u#, and combining the estimates for u#, and u,, we obtain (14). O

Corollary 4.3. Let R(A) be as in Proposition 4.2. Then for every f € LP(R), R(1)f € C(R) and
sup ((1 + DR < Call - (17)

xR

Proof. Let f € CJ(R) and set u; and u, as in the proof of Proposition 4.2. Since the proof for u; and
uy are similar, we only show the estimate of ;. From (15), we have for x > 0,

i ,(ImA+1 , 4 Cmd 11
(1 + [x)7 e (x)] < C} 5. & & 1 I le@oy(X + |2y~ 2 7272
1
ImA-1 i e v
e (M —ap 1) s [Ca o as)
0
1
ImA+1, \7 0 R &
< Cﬁ( ;P - 1) ||f||LP(R_)+C3( B A 1) A llzr .,
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'where 0 < @@ < 12+l 4 ]} This implies (17) for x > 0. If x < 0, then from (16) we can obtain

\

\ , \
1 Imi+1 , , i

| (1 + [x)) 7 Jus (x)] < C3 (TP =B = 1) 1A ze ey |

\ \

'where 0 < 8 < lmd+l

= ﬁ This yields (17) for x < 0. The proof is completed. ol

By interpolation inequality, we deduce the following assertion.

Proposition 4.4. Let 1 < p <ocoand p < g £ oo. Then
D(H,) c {w € CR) : {x)s sw € L},

More precisely, there exists a constant C, 4, > 0 such that

o

|
|
\
|
|
| |, < CoalllHyulls +lully).  w € D(H,).
|

Proof. The assertion follows from Proposition 4.2 and Corollary 4.3. m]
‘Proposition 45. ) If2<p<oand0<|ImA <1 - ]2—?, then N(A + H,) # {0}, and then

|
v,

\ {/{E(C; |Im/1|$1—;}Ccr(Hp);

|

(i) If1 < p<2and0 < |ImA < % — 1, then N(A + H),) € L?, and then

|
2

| {/IEC; |Im/l|£——1}ca(Hp).

| p

\

\

f (Au+ Hyu)w, dx = f u(Aw, + H,yw)dx =0,

o0

'the closure of R(1 + H ») does not coincide with L7, that is, R(1 + H)) € L?.
| Since o(H,) is closed in C and we can argue the same assertion for ImA < 0 via complex conjuga-|
ition, we obtain the assertion. gl

| Combining the assertions above, we finally obtain Theorem 1.1. |
\ |
5. Absence of Cy-semigroups on L” (p # 2,V = () \
\
|
\
Theorem S.1. Neither iH, nor —iH), generates Cy-semigroup on L”. ‘

In Theorem 1.1, we do not prove any assertions related to generation of Cp-semigroups by +iH,
‘In this subsection we prove

[Proof. We argue by a contradiction. Assume that iH, generates a Cy-semigroup 7'(¢) on L?. Then it|
follows from Theorem 1.1 (the coincidence of resolvent operators) that we have 7'(r)f = S(z)f for
every ¢ > 0 and f € L* N L”, where S (¢) is the Co-group generated by the skew-adjoint operator iH>.

Fix fy € L* N L? such that F fy ¢ L? (F is the Fourier transform). Then by the Mehler’s formula
(see e.g., Cazenave [3, Remark 9.2.5]), we see that
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OO

| N
— ; ) Zt‘mh(Zr}‘Al f smht 0¥ IZldnh( !Jl |
| [S(0)]f(x) = (zﬂ Sinh(m) ¢ e " () dy.

oo

2
L |x}=

&n other words, using the operators
—ib o
| M. g(x) := e g(x), Dyg(x):=72g(1"'x),

we can rewrite S(7) as the following form S()f = MumenF DsinneoMunnanf. Taking f, =

: P
‘M[Emh (2t0) v.mh 21p) fﬂ € L?, we have

| S(t0) fio = MannonF fo & L7 .
\
Fhis contradicts the fact T'(y) f,, € L”. This completes the proof. O

|

\
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Asymptotic stability of degenerate stationary solution to a
system of viscous conservation laws in half line

Tohru Nakamura*
Department of Applied Mathematics, Kumamoto University, Kurokami 2-39-1, Chuo-
ku, Kumamoto 860-8555, Japan

ABSTRACT

In this paper, we study a system of viscous conservation laws given by a form of a symmetric parabolic
system. We consider the system in the one-dimensional half space and show existence of a degenerate
stationary solution which exists in the case that one characteristic speed is equal to zero. Then we show the
uniform a priori estimate of the perturbation which gives the asymptotic stability ofthe degenerate

negativity of non-zero characteristics. The key to proof'is to utilize the Hardyinequality in the estimate of
low order terms.

Keywords: stationary waves; boundary layer solutions; compressible viscous gases; energy method;

center manifold theory
. J

|
\
\
\
|
|
|
| | stationary solution. The main aim of the present paper is to show the a priori estimatewithout assuming the
\
\
|
|
|
\

!
|
\
|
|
|
\
|
\
|
\
\
\
4 N |
\
|
\
\
\
|
\
|
\
\
1. Introduction |
\ |
| : : : : : : |
We consider a large-time behavior of solutions to a system of viscous conservation laws |

|
| u + f(u)x = (Buy)y (1.1)
|

over a one-dimensional half line R, := (0,c0). Here m is a positive integer; u = u(t,x) € R" is an‘
unknown m-vector function; f(u) € R”’ is a flux function which is a smooth given function of u; B is a
‘Vlscosuy matrix which is an m X m symmetric and positive constant matrix. |
' We prescribe an initial condition for (1.1) as \
|
\

|
where up(x) is an initial data satisfying uo(x) — 0 as x — oco. We also put a Dirichlet boundary,

‘condition |
| u®,0) =up, (1>0), (1.3))
\ |
&{elated to the system (1.1), existence and asymptotic stability of a boundary layer solution, which is a

\
‘smooth stationary solution connecting a boundary data and a spatial asymptotic data, for modelsystems‘

u(0,x) = up(x) (x€R,), (1.2)

where 1, € R™ is a constant,

of compressible viscous gases are proved in the papers [1, 4, 8,9, 10]. These results are generalized in the
papers [7, 14] for a quasi-linear symmetric system of hyperbolic equations and parabolic equations|

under the stability condition discussed in [3, 11, 13]. Especially, in order to prove asymptotic stability of
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| a degenerate boundary layer solution, which exists if the corresponding inviscid system has a

characteristic field with speed zero, it is assumed in [7] that the speed of the non-zero characteristicsare
|
|
\
1
| f) = Au+ 5 Fu,w), (1.4)
| |
where A = (ay,...,a,) (a; € R™)is a constant m X m matrix; F'(-, ) is a bilinear map on R"™ of the form|

| |
‘ m (F]M, V)

| F(u,v) = Zﬁjujvf =l : |erm
| Bl (qua V) |
for u = *(u1,...,um),v = ‘(v1,...,vn) € R™, where fi; = ¥( i;,..., ;}1) e R" (i,j =1,...,m) arel

lconstant vectors and Fj, = (fi';),j (k =1,...,m) are constant m X m matrices.
|

|
|
Assumption [A1]. (i) The matrix A is symmetric. |
|
\
|

Hlegative. In the paper [6], the simplified system (1.1) with the flux function /() given by the following

form and satisfying the following assumption [A 1] of symmetricity is considered:

| (i) The bilinear map F(-,-) is symmetric in the sense of i’j = J’j = _f,fj.

‘From Assumption [Al], we see that f;; = f; and F(u,v) = F(v, u), so that F} is symmetric.
P T y

|

In the paper [6], the simplified system (1.1) with non-positive characteristics is considered and the,

convergence rate of solutions toward the degenerate boundary layer solution is obtained provided
thatthe initial perturbation belongs to the weighted L’space. The important property of the system in [6]is!

ane gativity of non-zero characteristics which enable us to obtain the weighted L’estimate. |
| \

\ |
‘T he aim of the present paper is to show asymptotic stability of the degenerate boundary layer solution for‘

(1.1) without assuming that the initial perturbation belongs to weighted spaces. Namely we show the
uniform a priori estimate (3.4) under the assumption [A4]-(i) which means that the characteristic speed
of the system is non-positive. The key to proofis to utilize a weight function defined in(3.9). In the case if
Rhe viscosity effect is strong enough, we can also show the estimate (3.4) withoutassuming the negativity‘
of non-zero characteristics. This case corresponds to the assumption [ A4]-(i1).To study this problem, we

\
prescribe the following assumption.

\

Assumption [A2]. The matrix A has a simple zero-eigenvalue.

\

&\Iote that Assumption [A2] corresponds to analysis on the transonic flow for the model system o

compressible viscous gases studied in the papers[1, 2,9, 12].

e~ N



Notations. For vectors u,v € R”, |u| denotes the Euclidean norm of u; (u,v) denotes the Euclidean|
inner product of u and v. For real matrices A and B of which eigenvalues are real number, we use a,
notation A ~ B if the numbers of positive eigenvalues, negative eigenvalues and zero eigenvalues of A
coincide with those of B. For p € [1, oo], L” denotes a standard Lebesgue space over R, equipped with
anorm || - ||p».

|
2. Existence of stationary solution

In this section, we summarized the existence result of the degenerate boundary layer solution studied inl
|

‘[6, 7].Let @i=1 (x) beaboundary layer solution, which is a smooth solution to a system of equations
\

| f@), = (Bity), (x€R,), (2.1)
| |
‘which is rewritten to i |
‘ @i, = B A + EB*F(&, it) (2.2)‘
by integrating (2.1) over (x, c0) with using ii,(x) — 0 as x — co. We prescribe boundary conditions for
it as |
| |
| i#(0) = uy, (2.3)
| i(x) -0 (x—> o0). (2.4)‘

To solve the above stationary problem, we introduce a following lemma proved in [6, 7]. \
|

|
(i) The matrix B™'A is diagonalizable. |

Lemma 2.1 ([6, 7]). Let B be a symmetric and positive definite matrix and A be a symmetric matrix.

|
| (i) There exists an orthogonal matrix Q such that P := B™'>Q diagonalizes the matrix B™'A and,

| satisfies 'P = P"'B!,
((iii) B'A ~ A.

\
\
‘Here B2 is a symmetric and positive definite matrix satisfying (B'?)*> = B and B~ is an inverse‘
matrix of B2, |
\ |

We give a brief outline of proof of the solvability theorem to the stationary problem (2.2)—(2.4) by‘
‘following the argument in [6, 7]. Due to Lemma 2.1, there exists a matrix P of the form

\
\ P=(rP,), P.: mx(m-1)matrix, \
thich diagonalizes B7'A, that is, |

| 0 0 \
-1 p-1 A
| P'B AP—(0 A)’ (2.5)‘

where 0 is a column zero-vector and A is a diagonal (m — 1) X (m — 1) matrix satisfying detA # 0.‘
Note that the column vector r is an eigenvector of B~'A corresponding to the zero-eigenvalue, that is,
B'Ar = 0 and hence Ar = 0, which yields that r is also an eigenvector of A corresponding to the|
zero-eigenvalue. We employ a new unknown function w(x) := P~'ii(x) and deduce the system (2.2) to
that for w as |
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Wax = AW, + 8.(W), (2.6b)

\
|
)a w=wix)eR, W, =ﬁ)*(x)eRm—1’ |
|
g(w) 2

Let z = z(x) € R be a solution to (2.6a) restricted on the local center manifold w, = @°(W). Namely,‘

|

|

|

|

|

| ~ 1
| o) = (g ‘(W)) = P BV F(PW, PW), g(W)eR, g.(¥)eR"
|

| .

‘z:(x) satisfies

|

|

|

. \

zx = 81(z, B°(2)) = &k2° + O(l2), (2-7)‘

where « 1s a constant given by |
1

K= E(r, EF(r,r). (2.8),

Here the second equality in (2.7) is obtained by using P~!B~! =P and P = rw; + P,W, as well as a
bilinearity of F. To solve the equation (2.7), we put the following assumption. |
\

‘Assumption [A3]. Let r be an eigenvector of the matrix A corresponding to the zero-eigenvalue. Then
it is assumed that the constant « defined by (2.8) is not equal to zero. |
‘Note that we assume « < O without loss of generality. We also note that the assumption [A3] is‘
‘equivalent to the genuine nonlinearity of the zero-characteristic field. |
| If the boundary data u, belongs to a certain region .# C R™, which is a one side of a neighborhood
oof the equilibrium divided by a local stable manifold, and if the boundary strength ¢ = |uy| is sufficiently!

ismall, then the equation (2.7) has a solution z satisfying

a0 Zzdo=10 Zx)~ ,
| 1 +6dx

| P 2.9)
| 0hz(x)] < Caromet k=010,

|
|
\
|
|
By virtue of the center manifold theory, the solution W to (2.6) is given by using z as \
| wi(x) = z(x) + O(6e™), |
| W, (x) = @(z2(x)) + O(Ge™), |
‘which gives the existence of the solution i. |
\ \
‘Theorem 2.2 ([6, 7]). Assume that Assumptions [Al], [A2] and [A3] hold. Then there exists a certain‘
region # C R™ such that if w, € .# holds and 6 = |uy| is sufficiently small, then the problem (2.2)—(2.4)
has a unique smooth solution ii(x) satisfying |
\ |
| ii(x) = rz(x) + O(z(x)* + de™), (2.10)‘
| i1(x) = krz(x)” + O(z(x)’ + Se™). (2.11)
‘3. Energy estimates

\
\
In this section, we show the uniform a priori estimate of a perturbation
|



\ p(t, x) = u(t, x) — ii(x)

‘Which gives the existence of a solution globally in time. From (1.1) and (2.1), the equation for ¢ is
‘given by
‘ ()DI gy Duf(“)‘px = B@);_x - (Duf(u) — Duf(ﬁ))ﬁx (x € R-H 1> 0)5 (31)‘

‘where D, f(u) = A + ({f;;, u));j. The initial condition and the boundary condition are prescribed as

| |
| ©(0, x) = @o(x) := up(x) — ii(x) (x€R,), (3.2),
| @(t,0)=0 (1> 0). (3.3)

To obtain the uniform a priori estimate, we prescribe the following assumption.

|
fkssumption [A4]. It is assumed that either of the following two conditions is satisfied:

| (i1) The viscosity effect is strong enough to satisfy
\

\
\ for an arbitrary ¢ € R™, where C, is a positive constant in (3.19).

|

|

|

. (1) The matrix A is non-positive definite, that 1s, the diagonal matrix A is negative definite, or |
|

2 a |

(B¢, @) > C\FIgl,  F := max|f] |

|

Notice that Assumption [A4]-(i) corresponds to analysis on the transonic flow for the outflow problern‘
'of compressible viscous gases. Assumption [A4]-(ii) corresponds to the condition that the Reynolds|
number is sufficiently small for the model system of compressible viscous gases. The a priori estimate|
for ¢ is summarized in the following theorem. ‘

'Theorem 3.1. Assume that Assumptions [A1], [A2], [A3] and [A4] hold. Let ii be a degenerate bound-|
ary layer solution obtained in Theorem 2.2 and let ¢ € C°([0, T]; L?) be a solution to (3.1)—(3.3) for af
certain T > 0. Then there exists a positive constant &y such that if |lgoll2 + & < &, then ¢ satisfies the,
+f()l.l’(mzing uniform estimate |

Remark. By combining the existence of the solution locally in time with the a priori estimate (3.4)]
'we can construct a solution ¢ € C%([0, 0); L?) globally in time. Moreover, if we construct the solutionl
in H'! framework, we can show the asymptotic stability ||¢(7)||;» — 0 as t — oo, In this paper, we only|
give the derivation of the basic estimate (3.4) in L? framework.

d \
le(n)lI7> + ﬁ lex(D)II7> d7 < Cligoll7: (0 <1< T). G4)

To obtain the estimate (3.4), it is convenient to define the weighted L? norm

|
\
T L
o = A d s
ol (fRz ol dx)
|

where z(x) > 0 1is a solution to (2.7) satisfying (2.9).

\Proof of Theorem 3.1. We employ the energy form & and the energy flux .% defined by

Alu,v] == (Au,v) = Z ajuvj, Flu,v,w]:= @, F(v,w)) = Zﬁﬁuivjwk,

e i,jk

|

\

\

\

|

\

|

\

5’=1E & ?=1A[ ]+1F[i‘£ ]+1F[ ] |
2SD ? 2 (p’(p 2 ’(p’(P 3 Q‘O’(P’(p’ ‘
|

\

\

\

\

\

|



\where u = '(uy,...,uy), v ="(v1,...,vy) and w = ‘(wy,...,w,,). Note that A[u,v] and F[u, v, w] arel
multi-linear forms. Then we see that & and .% satisfy
|

\
1
‘ g = (ﬁxa f(u) i f(ﬂ) i Duf(ft)‘:o) — EF[‘&M ¥ (P]

&+ F+ G + By, ¢x) = ((Byy, 9))s, {3.5)

‘We firstly show the proof of (3.4) under the assumption [A4]-(1) by following the idea in [7]. We
‘change the variable ¢ to ¥ defined by y(t, x) := P '¢(t, x) where P is a diagonalization matrix of B A

‘satisfying (2.5). Then we see |

| |
| ¢ =Py =ry +Py., (3.6)

| w — (:Zl) , 'ﬁl(ta X) € R, lfl*(f, JC) c Rm—].
‘ *

|
|
By using ‘P = P"'B™!, we see |
| |
| Alp, ¢l = (APY, Py) = ('PAPY, ) = (P B APY, ) = (AW, ). |
\Also, (2.10), (2.11), (3.6) and multi-linearity of F yield |

|

]' —CX —CcX
F = (AP, g.) + Ol + 8¢ Ipl") < —cilyr.l” + Olgl’ + 8¢l (3.7)
G =K7Y + 7Y + 0 el + 6 gl), (3.8)

where ¢ is a positive constant. Here ¢’ is a quadratic form consisting of ¢, and ¢, satisfying

where C is a positive constant. To obtain the estimate (3.4), we employ the weighted energy method
with using a weight function

|
|
|
| |
| |
| "] < CL(gligel + ), |
| |
| |
| |
|
|

W w 2c,1* (3.9)
X)= —, w = . .
w — kz(x) 9(3C7 + 2C1K%) |
If § is small enough to satisfy |z(x)| < w/2, we see that W satisfies |
| |
\ % <Wkx) <2, Wiix)= lKZWZ.ZZ +0(z%) > 0. (3.10),
)
Multiplying (3.5) by W, we get |
| |
‘ (WE) + (WF), — Wi F + WG + W(Bpy, o) = (W(Bpr, 9))x = Wi(Bps, ¢)- (.11)
'We estimate —W,.# + W% in (3.11). From (3.7) and (3.10), we have \
| |
4x> =
| W > 9:‘ 2P + OPIgP + se=IoP). (3.12)
Also, (3.8) and (3.10) give |
| 2% o |
| WS 2 ==27 = 202 (llged + =) + O + 5e™Il?) |
| 2 3C2 + 2C K> . |
| > S22 - 2 + O + 8¢ g, (3.13)



i

where we have used 2C |1 ||| < %g&f + =ty Therefore, (3.12) and (3.13) yield

K2 ‘
| |
| - W7 + WY > cZlgl” + O W + 2yl + delgl). (3.14)
The last term in the right-hand side of (3.11) is estimated as ‘

IWe(Bepy, 0)| < CS(Z Il + o). (3.15)

Integrating (3.11) over [0, 7] X R, , substituting (3.14) and (3.15) in the resultant equality and letting 6
suitable small, we have

T t
lplf7 + f (Il + ligallz2) d < Cligolly + C f f (el +oe™IpP)dxdr.  (3.16)
0 0o Jr
E \
To estimate the remainder terms in the right-hand side, we compute |
f 2l dx < ligll=lpl> < Cligliz(ipP, + llgdP.), (3.17)
Ry

where we have used the Sobolev inequality [l¢|l;~ < C ||"0||i£2”‘p’f”i/22 and |¢|_» < Cllegll2. Also, due to

the Poincaré type inequality, we see \

|
f gl dx < CligIi. (3.18)

|
|
|
‘Substituting (3.17) and (3.18) in (3.16), we get
|

s s
llpll7> + f (g2, + ll:ll7>) d < Cligoll7> + C sup ligll.2 f (Ipl2, + llallZ2) dr
0 0<t<T 0
which yields the desired estimate (3.4) provided that ||gy||;2 1s sufficiently small.
| Next, we show the proof of (3.4) under Assumption [A4]-(ii). By using
|
|

and the Hardy inequality, we see

| o 1 =
| f %\ dx < CF f Ll dx < CuFllg . (3.19)
R, R,

| N -
91 < Sl F (e, ¢)l < CF2lf < CF—lgl?

where C, is a positive constant. Thus, integrating (3.5) and substituting the above inequality with using
|

\ \
Notice that the computation in the present paper is also applicable to the model system of compressible

‘Assumption [A4]-(i1), we obtain the desired estimate (3.4). Consequently, we complete the proof. O
|

and viscous gas which is given by a hyperbolic-parabolic system. We also note that the condition [A4] is

assumed because of the technical reason. It is open problem that we can remove this conditionor not.

|
| |
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A survey of critical structures in competitive games

Amir Hossein Rashme, Zahra Farhad Touski*and Madjid Eshaghi
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ABSTRACT

One of the biggest problems of human society is facing crises. Origins of many crises go back to strategy
selection in the relations between human beings. The international community is facedwith many crises,
such as poverty and lack of development of a large section of human society, globalwarming, economic

migration, lack of food and clean drinking water are among the crises that threateninternational

beyond the limited resources of the international community. In this article, the criseshave been discussed,
whose origin is relations between human beings. By defining critical points in2 x 2 games, we provide a
mathematical model to detect this type of crises, and then by defining aunique compromise point, we offer
solutions for this type of crisis. Sometimes the compromise pointcorresponds to the Nash equilibrium, and
sometimes better than Nash equilibrium. We believe thatwhat is presented in this article can help fill the
void. Fixing the vacuum in game theory and optimaluse of compromise and critical points leads to the
development of cooperation—cooperation strategy inthe world.

Keywords: critical point; compromise point; Cuban Missile Crisis; cooperation strategy;non-cooperative
games
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| | community. Each of these challenges alone would require measures and facilities that inmany cases are
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The international community is faced with many crises, such as poverty and lack of development of a
large section of human society, global warming, economic crises, the incidence of infectiousdiseases,|
the accumulation of weapons of mass destruction, wars, migration, lack of food and cleandrinking water
are among the crises that threaten international community. The other considerablecrises that pose new
Problems for the international community, such as increase in spending on arms rise in refugees to
ﬁurope, increased hunger in developing countries and environmental crises.

|

The international community and non-governmental international institutions active in disarmament

land arms control have focused their attention to the crisis of rising costs of weapons of mass destruction
\ |
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because of the destructive power of weapons of mass destruction, especially nuclear weapons. The

deteriorating situation in this area represents a major crisis in the international community that we callit

. : : . \
Elave exacerbated this, so that large arm factories, mainly owned by the powerful countries, lookfor an

\
arena to transfer and stockpile weapons widely and publicly. In fact, the issue of the transfer‘

crisis of confidence. Crisis of confidence opens the way for irrational processes. The economiccrises

\
ofconventional weapons is the reason behind some global conflicts and undermines international

stabilityand security. This is while there are no mechanisms to control these weapons. \
| \
Military spending in 1970 was equivalent to 235 billion dollars and in 1985 reached about 940 billion‘
‘dollars. The costs in 2002 reached its lowest level, but since 2002, this figure has been risingagain. In
@008, the figure was beyond one trillion, four hundred and sixty-four billion dollars. Thistrend has‘
continued until the arm cost of the first 10 countries in this regard (America, China, Russia,Saudi Arabia,|

etc.) has reached the figure over a trillion four hundred billion dollars [30, 31, 32, 33].The crisis ofl

‘immigration to Europe reached its highest in 2015 with an increase in the numberof asylum seekers and
|

\
F(ambiya, Somalia (Balkans), Albania, Kosovo, Monet Montenegro, Bosniaand Herzegovina, SerbiaW

‘economic migrants from regions like the Middle East (Syria Iraq, Palestine(Africa) Eritrea, Mali,

(And South Asia), mostly from Afghanistan, Pakistan and Bangladesh goingto European Union through,
Southeast Europe and the Mediterranean. According to United NationsHigh Commissioner for
Refugees, by the end of August 2015, seventy percent of refugees were fromSyria, Afghanistan and
Eritrea. The term refugee crisis became prevalent in April 2015 followingthe sinking of five boats
carrying two thousands of refugees to Europe on the Mediterranean Sea andkilling more than 1,200
People [3]. |
| \

/Another crisis in the twenty-first century making the international community suffer is hunger crisis.|

The main cause of poverty and hunger in the twenty-first century is unfair global economic and
|
|

|
Wars arean important factor in the spread of hunger and poverty. Climate changes are known as an

‘politicalsystems. In addition, a minority group usually monopolizes control over resources and earnings

Powerbased on military, political, and economic issues and lower classes of society get less of them.

influentialfactor in the spread of hunger and poverty. Increased droughts, floods, changing weather
patterns havenegative effects on agricultural work and lives of people around the world. According tol
TAO, nowclose to 870 million from 7.1 Billion people of the world, i.e. one eighth of the world’s

Populationsuffers from chronic malnutrition.
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Almost all the hungry people live in the developing countries. The number of undernourished people in
the Asia-Pacific has reduced to 563 million from 739 million reduced by 30 percent. In LatinAmerica

and the Caribbean, 65 million hungry people in 1990-1992 have reduced to 49 Million in2010-2012.
|

|
i.e. one out of four in Africa are hungry [12]. |

however, the number of hungry people in Africa has increased from 175 million to 239 million people

|
\ |
'What we are seeing now, is the results of hundreds of years of unequal development in the rich world that

passed the vast majority of other countries in the world. Therefore, the people not includedin this
|

| : . o . |
Poundarles between the world’s rich and poor. Poverty reduction in poor countries will solve theproblen‘ﬁ

‘development look for a better life, and this determination has placed disproportionate burden onthe

‘of refugees, but this will not happen quickly. In the short term, the stabilization of unstable political‘

situation in conflict zones would help [4, 5, 6, 11]. \
| \

When speaking of the crisis, we must define crisis in accordance with the conditions of the peo ple‘
|

‘involved with it. A critical moment is the turning point for better or worse life that is a short but‘

Pleaningful definition. In general, it should be accepted that offering a clear definition of crisis is‘
verydifficult and all definitions are relative. This is because a subject may be a crisis to an individual,
organization or society, but not for the other. However, the fact that in critical situations something

urgentand serious must be done for the condition not to get more critical is acceptable to all

communities.Some crises arise suddenly and abruptly and have sudden effects on the internal and

|
are gradualor density crises that start from a series of critical issues and are strengthened over time,‘

\ . o . .
external environment of the organization. These crises are called sudden crises. On the contrary, there

continue toa threshold level, and then arise. From the perspective of Parsons, sudden crisis will be
gradual andcontinuous. Sudden crises have no prior warning signs and organizations are not able tol

investigatethem and plan to do away with them. Crises created gradually and slowly can be stopped or
|
\

‘to dealwith these crises in different situations depend on the time pressure and the extent of control of‘

‘theseevents. Mitraf uses two spectra for the classification of crises. One spectrum determines the

‘restrictedby organizational measures. Continues crises may last weeks, months or even years. Strategies

crisesbeing external or internal: whether crises happen within or outside the organization. Other

spectrumdetermines crises being technical or social. \
\ \
the first division of crisis can be individual, group, organizational, and social. Social crises are divided

|
into political, cultural, economic, health, natural or a combination of these crises. Usually it isthouth

\
that only social crises should be managed, but the fact is that social crisis must be managed first. Facts

and figures such as population growth rate, age composition of the population, unemployment rate,)
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growing curve of industry, growth rate, the percentage of dropout at different levels, the capacity off
laccepting technical and vocational education, the growth rate of some diseases, the growth rate
\ |
|

\
inevitablenecessity of knowledge management in the public service and management.Causes of the‘

ofaddiction, suicide rates in the age groups and social status and gender, and many simple

| .
‘statlstlcalresults on the one hand show a very special circumstance, and the other hand, represent the

\
crisis are very different. A psychological variable, a sudden attack, diplomatic ten sions, war, coup,

collapse of states, states of turmoil, violent protests, ethnic conflicts, the studentmovement, non-

regulatory challenges of political factions, and so on each one can be a severe anddestructive source off
\

\
@. Materials and method

crisis.

2.1. Game theory
|

| Definition : (Nash equilibrium) The action profile a* in a strategic game with ordinal preferences is
'a Nash equilibrium if, for every player i and every action a; of player i, a” is at least as good according
'to player i’s preferences as the action profile (a;,a’;) in which player i chooses a; while every other!
player j chooses a; . Equivalently, for every player i, |
\ ui(ax) = ui(a;,a*;) for every action g; of player i \
Where u; is a payoff function that represents player i’s preferences [26]. |

Whenever there are several Nash equilibriums in a game and the players have to choose the same,
‘strategy, if they are wise, they must find a way to coordinate their beliefs and expectations concerning‘

\ |
| choice and practice of each other. One of these methods is “focal point”. The influential element in‘

convergence of expectations and beliefs depends on culture, rituals, and customs. Thomas Schelling f
irst presented the idea in 1969. In his opinion focal point or focal points for each person mean his|

lexpectations about others’ expectations of his expectations. In this article, we will take a new approach inl
|
\

\
‘in chicken game, GT finds a strategy that leads to Nash equilibrium and the most important goal of‘

‘approaches Nash equilibrium is when one party gives up the other continues. We shall show that iq

GTtosolve many crises in modern societies: crises that GT has not provided any solutions. For example,

chicken game, there is a better Nash equilibrium point that it is withdrawing from the game by both
players, which is called compromise in this article. To illustrate the importance of this new definition, we
refer to the famous of prisoner’s dilemma game of two prisoners [23, 25, 27, 34] that show Nash
equilibrium is not necessarily the best choice and this is when both prisoners choose to “compromise”

and get the best out of this collaboration.
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12.1.1. Crisis in game theory
|

| Crisis in non-cooperative games: the process or change that disrupts the balance (balances) of the
target population gets the community outside of normal state, and takes it towards border o

‘cooperation—non-cooperation (non-cooperation—non-cooperation) is called crisis. Depending on the
definition of crisis and crisis community, crisis can be classified in di erent ways. Here, we consider the
new categorizing of crises as a whole: \
| \
‘(1) Man-made crises- natural disasters |
‘(2) Predictable crises- unpredictable crises
‘(3) Controllable crisis- uncontrollable crises |
|(4) Immediate crises- crises over time \
| \
|Our researchis on man-made, predictable, controllable uncontrollable, and over time crises. Our goal is
‘to identify critical points by modeling the structure of the crisis in the community in GT. In the future,
|

‘With the help of time series and random process, we will have o ered statistical models that using the

roots of the crisis will have the power of forecasting crisis over time and then we can obtain the target
population crisis. If the crisis is controllable, in the stage before crisis, we control it, and if it is|

uncontrollable, with the predictions and with the help of crisis management, we provide the ground tol

minimize the e ects of crisis while happening and the consequences after it. |
| |

| |
‘Crisis point: in the game G, if N is the number of players and §, is set of strategies for playeri. The payo

of the show playeri with u, |
| ;S > R Vie N.
|

| S Cartesian product strategy players: S =5, XS, X S3 X xS,
For example, the payoff of the players the strategy (sy, s1,, 1) is defined as follows:
ui(a) = u(sy,s1,,5) €R

up(a') = ux(sy, s1,,51) €R

HH(al) = H](S], Sla bl Sl) e R



According to the assumptions of the point (points) crisis are defined as follows:

Ci(d") = (u;(d) , u_i(d))=3i e N, ¥k

ui(a’) = Max {ui(a") s dk e Ai}
and
Vj,j#1i uja*)= Min {M_f(ak) cadke A,-}

In this case, K is the player crisis making, and N — K is the player crisis-stricken. This kind of crisis is|
called the first type of crisis. If

Ci(d) = (ui(d) , u_i(d*)) =i e N,Vk

Here are all the players are crisis-stricken. This kind of crisis is called the second type of crisis.
In the game G, if N = {1, 2} number of players, and §| = {sy, 52}, S2 = {51, 52} strategy players. u;

payoff of player i is

'Payoff of players for each combination of strategies are defined as follows:

u; . § —

S Cartesian product strategy players:

S =81 %x82 ={(s1,51), (51, 52), (52, 51), (52, 52)}

uy(ay) =u(s;,s)) R,

ui(a®) = ui(s;, ) €ER
3

u(a’) = ui(sy,51) R,

4
u(@) =u(s2, ) €R

According to the assumptions of the point (points) crisis are defined as follows:

Ci(a) = (ua"), u_(a’)) =i e N,Vk

‘Or

Cia’) = (ula’), u_(a’)) =i e N,Vk

u;(a*) = Min {u,-(ak) s ate Ai}
and
V). j#iuja)=Minlugd) : d* €A,

R YieN.

ur(a) = ur(sy, s1) €R
u>(a®) = u»(sy, $2) € R
(@) = u(s», s;) € R

wr(a*) = uy(so, 55) € R

u;(a*) = Max :::si(ak) s dbe Ai}
and
Vj, j# i ua) = Min fu@) : at € A

u(a*) = Min [u,(a"’) s adte A,-:
and
Vj, j#1 ufa’) = Min iuj(ak) s dbe A;:
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' In each game, according to the preferences of the players, point of cooperation—cooperation is the
compromise point of the game. Compromise point is used to resolve the crisis in the game. Compromise

&)oint is a unique in the 2 2 games. Because in the 2 2 games, there is just a house of matrix games that

. : . \
Lt)o‘[h players choose to cooperate. In some of these games, this point overlaps with Nash equilibrium, and

\
in some games, there is a better choice for players than Nash equilibrium. By studying the structure of‘

\
crises, both natural and unnatural, we concluded that crisis and crisis making are in context of games. In
other words, we can show with what strategies players create crisis and what the best way to deal with it
is what strategy. According to the terms of the game and the preferences of the players, we can define a
|

‘crisis point in the 2 2 games. Interestingly Stag Hunt game does not have a point of crisis. Stage hunt
ﬁame is based on cooperation, bilateral trust and patience is built and players who choose to play Stage
punt are aimed at cooperation—cooperation. Choosing strategy in Stage hunt at first glance is very,|
simple. The result of cooperation is more fruitful than fraud (in the language of game theory, betrayal), so
we should always consider cooperation and get better results. This is opposite the prisoner’s dilemma.
This dilemma stems from the fact that regardless of the actions of the other side of the game, the result is
‘always to the benefit of dishonest person. However, what is problematic in stage hunt game is the

‘element ofrisk. Accordingly, itis clear that in this game there is no crisis.

| So far, in GT, Nash equilibrium has represented an unchangeable point for the players, in which|

collective profit has had priority over individual profit, and at the mentioned point, none of the players
|
|

|
‘for aplayer and shows that if players choose this point, sometimes they themselves, and sometimes other‘

Wwant to change their strategy. In this article, we show that there is sometimes a better choice for players

‘than Nash equilibrium. The critical point in each game represents the worst and the most selfish choice

players incur the lowest possible impact on the game. To compensate for this, the best strategy for
players, according to their strategy preferences, is to trust each other and cooperationcooperation. Byl

recognizing the critical point and the point of compromise in game, one can move players in the direction
|

%hat they adopt strategy of cooperation—cooperation and trusting each other in the first iteration of the
|
Eame [21,22,24,26,34].

\
| \
2.1.2. Prisoner’s dilemma games \
\ \
|
\
\

‘equilibrium in GT. While in this game, there is a better option to choose. Recognizing the crisis points of‘

the game and then identifying points of compromise of the game make players achieve

'The prisoner’s dilemma game [26, 34] is based on a lack of trust in the opponent and shows the state

‘where without trusting the opponent players cannot gain more, and in the best state gain Nash

cooperationcooperation with one iteration of strategy. \

‘ AIMS Mathematics (Volume - 10, Issue - 2, May - August 2025) Page No. 49 ‘



C|R,R ST
D T.S PP

u(@)=u(C,C)=ReR , w(a)=u(C,C)=RER

(@) =u(C,D)=S €R , w(@)=w(C,D)=T¢€cR
@) =u(D,C)=TeR , w@)=u(D,C)=5 €R
(@) =u(D.D)=PeR , ua*)=uyD,D)=PeR

|

|

\

|
\ \
\ \
\ \
\ |
\ \
| |
| T>R>P>S |
LPlaycrs. payoff will be as follows:
\ |
\ \
| |
\ \
\ \
\ \
\ |
\ \

In the prisoner’s dilemma game when crisis occurs when one of the players pursue cooperation, and

\
another defect. The points (CD) and (DC), are critical points.

|
| |
| Ci(@®) = (@), w(@)) = (C.D)= V=134 u(@) < u(d) & wa®) 2 uya"} |
\ \
| Caa) = ((@’) , ua@’)) = (D.C) = {1 = 1.2.4 (@) 2 w(d) & uxa’) < w(a")} |

| Critical points of the game, the crisis of the first kind. In other words, the min and max payo for the

Players. In this game the best choice against the crisis, choose a point of compromise. This is a strategy o |

‘cooperation—cooperation (CC). It should be noted that in the prisoner’s dilemma game, NaslH
equilibrium can also help to resolve the crisis in the long time. But the compromise, better and more
appropriate way. Indeed, if we use the Nash equilibrium to solve the crisis, there is the possibility that

players will move towards the crisis point. In this case, the game has to be repeated several times so

‘players go to the compromise point and the crisis will be resolved. As a result, in the prisoner’s dilemma‘

ﬁame, choosing a compromise point is better than Nash equilibrium. In the future, with a focus on a‘

‘compromise point, perhaps a good solution could be found to counter the ZD strategy.

|
| |
2.1.3. Chicken game |
| |
‘Returning to one-on-one situations, we come to the dangerous game of Chicken. Here itis notas much a‘

\
Fnatter of assigning specific numerical values to rewards (which can be di cult in many cases) as of

\
looking at how well you might do out of a situation in the order: good, neutral, bad, worst [33]. The,

structure is designed to start the chicken game in such a crisis. In this game Hawk and Dove to take a
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prey to compete. Each strategy ahead of them.

Hawk Dove
Hawk | X, X W.,L
Dove | LW T, T

ui(a') = uy(Hawk, Hawk) = X € R, u»(a') = un(Hawk, Hawk) = X € R
u(a®) = uy(Hawk,Dove) = W € R, uy(a*) = uy(Hawk, Dove) = L € R
u (@) = uy(Dove, Hawk) =L € R, uy(a®) = u,(Dove, Hawk) = W € R

|

| |
| |
| |
| |
| \
| |
| |
| |
| |
| W>T>L>X |
| \
| |
| |
| |
| |
| |
| \
\ ui(a*) = ui(Dove,Dove) =T € R, wu(a*) = us(Dove,Dove) =T € R \
| |
|

| Nashequilibria are (Hawk, Dove) (Dove, Hawk). Thecritical point is Game(Hawk, Hawk)because!
|

\ .. . .. . . |
‘outcome. The crisis of the second type and the two rivals are crisis-stricken. In fact, min and mm‘

consequences of two players. In interpreting this game if two hawk to seize prey heavily collided witlH

&)layers with a choice of strategy of non-cooperation—non-cooperation to achieve the worst possible

each other to create a crisis where they may both be killed.

\
| Ci(a") = (u (@), u(a)) = (X, X) ={vz=2,3,4 u(a@) <u@) & ux(a') < uz(a’)}

Cy(a') = (@) m(a')) = X.X) = {¥1=23.4 w(@") < ud) & uxa") < uy(a)}

|
'In this game, Nash equilibrium cannot be one way to resolve the crisis because the lack of cooper ation

\
|
\
'Or equivalent |
|
\
\

by one of the players may increase the severity of the crisis. The only and best solution in this game is a
ﬁaoint of compromise that (Dove, Dove). It was used to solve the Cuban missile crisis from a compromise‘
| oint. If they were using Nash equilibrium, disaster would occur. In this game, the compromise point is

absolutely superior to Nash equilibrium.
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|3. Conclusions and discussion
|

Crisis of irrigation systems: in the article evolution of game theory application in irrigation sys tems,
\ : : e
‘conﬂlcts and crises emerged over the use of water and irrigation, and put them analyzed by game theory.

‘T he first recorded dispute in antiquity took place between the cities of Umma and Lagash in the Middle

East over irrigation systems and diversion of water from Tigris and Emphratis rivers. That dispute had
lasted for 100 years from 2500 to 2400 B.C. Continuing conflicts over Mesopotamia through passing off

years led Hammurabi the king of ancient Babylon in 1790 B.C. to enforce laws prohibiting water theft in
|
\

‘in the value of farmland in eastern California in the nineteenth century, successive conflicts over Water‘

Fi ghts between India and Pakistan to the brink of war went ahead, the fight over the Jordan River J ordan,

‘irrigation systems, in his famous “Hammurabi’s Code” [25]. Crisis and conflicts for water between cities

Russia and Israel in the 1950s and 1960s, and... All these are examples of crisis and conflicts over water
and irrigation in the world that the structure of game theory, the prisoner’s dilemma game has beenl

‘analyzed. |

| One of the games mentioned in this article groundwater pumping game that was introduced by‘

Madden(2010). Inthis game, players are going to use the rationality game, to perform non-cooperation,
with each other. The structure of the game, when the crisis will occur when a farmer PRL strategy and

other strategies to adopt PRH and a conflict arises between farmers. |

\ \
| Ci(a-;) = ((PRL,PRH), (PRH,PRL)) |

| |
‘F armer who chooses PRL strategy is the crisis and by Strategy PRH the farm is crisis-making. There is a

better way for the farmer to solve this conflict Nash equilibrium can use it and it is this strategy,

(cooperation—cooperation) or the same (PRLPRL) [25]. |
| \
‘Cuban missile crisis: another application of the critical point, which implies the importance and‘
|
\

| |
This study surveys and evaluates previous attempts to use game theory to explain the strategic dy namic

\
‘strength of'this point, see the article “A Game Theoretic History of the Cuban Missile Crisis™.

of the Cuban missile crisis, including, but not limited to, explanations developed in the style of Thomas

‘Schelling, Nigel Howard and Steven Brams [2]. And shows the existing vacuum is triggered, the Cuban

‘missile crisis by game theory is not well analyzed. A crisis that has been characterized, Without‘

\
exaggeration, as the “defining event of the nuclear age”. All of the explanations were judged to be either

\ \
incomplete or deficient in some way. Schelling’s explanation is both empirically and the oretically,

inconsistent with the consensus interpretation of the crisis; Howard’s with the contemporaryi
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understanding of rational strategic behavior; and Brams’ with the full sweep of the events that define the

crisis. Equally troubling is the scant empirical evidence that the Kennedy administration either
|

\ . . : . . \
‘other insider accounts have claimed, or successfully made use of any related brinkmanship tactics that

\
Fesulted in a clear US victory. The crisis ended only when both sides “blinked”. Nigel Howard’s meta-,

hanipulated the risk of war during the crisis with “mathematical precision”, as Schlesinger and some

game analysis of the missile crisis also fails to provide a compelling explanation. Similarly, the
improved meta-game technique of Fraser and Hipel falls short of the explanatory mark. Like Howard
[14], Fraser and Hipel find that the compromise outcome is an equilibrium in their dynamic model, but
‘are unable to explain, at least game-theoretically, why it, and not another co-existing equilibrium, ended‘

\ \
‘thecrisis [2,13,15]. |

| |
|Problem in their conclusions of their analysis on game theory, but there is a major vacuum in the game,

theory. The vacuum in the Cuban missile crisis as a critical point of chicken game, if occurred, would

start a nuclear war in the world and both games were in crisis-stricken. The research was carried out b)A
\

\
only way to solve the critical point in game theory is the compromise point. In order to solve the CubaIH

‘game theory, the two countries to resolve the crisis were to the strategy of cooperationcooperation as the

\
missile crisis selected the cooperation—cooperation as the best option. This is a more appropriate choice,

of Nash equilibrium in the chicken game. \

| Zero-determinant strategies, extortion: Recently, Press and Dyson have proposed a new class of

\ I . . . . . \
Probablhstlc and conditional strategies for the two-player iterated prisoner’s dilemma, so—called‘

Ferodeterminant strategies. A player adopting zero-determinant strategies is able to pin the expecte(y
payo of the opponents or to enforce a linear relationship between his own payo and the opponents’ payo ,
in a unilateral way. This paper considers zero-determinant strategies in the iterated public goods game, al

representative multiplayer game where in each round each player will choose whether or not to put his

Rokens into a public pot, and the tokens in this pot are multiplied by a factor larger than one and then‘

|
‘evenly divided among all players. The analytical and numerical results exhibit a similar yet di erent‘

‘scenario to the case of two-player games: (i) with small number of players or a small multiplicatioq
factor, a player is able to unilaterally pin the expected total payo of all other players; (ii) a player is able to
set the ratio between his payo and the total payo of all other players, but this ratio is limited by an upper

bound ifthe multiplication factor exceeds a threshold that depends on the number of players [28].
\

\
|
f)E(_1+PI=_1+p2=P3:P4)
Is solely under the control of X; whose third column, |

|

‘ AIMS Mathematics (Volume - 10, Issue - 2, May - August 2025) Page No. 53



‘? = (_1 + qlaq:’w—l +q23q4)

Is solely under the control of Y; and whose fourth column is simply /£ X’s payo matrix is S, -

(R,S,T,P)whereas Y’sis S,= (R, T,S,P)[29].

\ \
| According to the preferences of the players see the player X, the consequences of player Y holds and

adjusts the moving with preferences prisoner’s dilemma game. But the player Y with changes inl

preferences so that he knows the plays during the game, the best strategy is cooperation and will receivel
\

khe greatest consequence of (7) may be in play. However, in contrast to cooperate with defect in

| . : . C .
Prlsoner’s dilemma games cooperation strategy will get the lowest payo (S). In fact, this is critical pomt‘

‘in game and player X takes the control of the game with using the critical points in the prisoner’s dilemmq
game and strategy pin[1, 16,17, 18, 19, 20, 28, 29]. In this case, player X is making crisis and player Yis
crisis-stricken. Player X due to the crisis that led to his opponent could extortion him. What is surprising

is not that Y can, with X’s connivance, achieve scores in this range, but that X can force any particularj
\

|
Y, except on a timescale of her own choosing. A consequence is that X can simulate or “spoof” any,

‘score by a fixed strategy p, independent of Y’s strategy q. In other words, there is no need for X to react to

\
desired fitness landscape for Y that she wants, thereby guiding his evolutionary path [29]. |

\ \
The question is whether the crisis point we can say there is a ZD strategy for all 2 2 games? If

‘established, would follow this structure? |
\ |

\ \
| Given the widerange ofgametheoryinvarious fields of political, economic, social and international‘

relations, the question raised here is whether game theory is its ability to be as dynamic systems in

medical sciences, particularly in the field of used to predict disease? |
\ |

| Can the evolutionary stable strategy (ESS) used in order to prevent the spread of communicable‘

|
‘diseases such as Ebola, Zika and types of flu?

\
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