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 Comparison of Propagation Models and Forward  
Calculation Methods on Cellular, Tissue and Organ Scale 

Atrial Electrophysiology

 Claudia Nagel  , Cristian Barrios Espinosa Gernot Plank , Olaf Dössel , Karli 
Gillette, Matthias A.F. Gsell , and Axel Loewe , Jorge Sánchez , Senior Member, 

IEEE

A B S T R A C T
Objective: The bidomain model and the  f inite element method are an established standard to 

mathematically describe cardiac electrophysiology, but are both suboptimal choices for fast and 

large-scale simulations due to high computational costs. We investigate to what extent 

simplified approaches for propagation models (monodomain, reaction-Eikonal and Eikonal) 

and forward calculation (boundary element and infinite volume conductor) deliver markedly 

accelerated, yet physiologically accurate simulation results in atrial electrophysiology. 

Methods: We compared action potential durations, local activation times (LATs), and 

electrocardio grams (ECGs) for sinus rhythm simulations on healthy and f ibrotically 

infiltrated atrial models. Results: All simplified model solutions yielded LATs and P waves in 

accurate accordance with the bidomain results. Only for the Eikonal modelwithpre-

computedactionpotential templates shifted in time to derive transmembrane voltages, 

repolarization behavior notably deviated from the bidomain results. ECGs calculated with the 

boundary element method were characterized by correlation coefficients >0.9 compared to the 

finite element method. The infinite volume conductor method led to lower correlation 

coefficients caused predominantly by systematic overestimations of P wave amplitudes in the 

precordial leads. Conclusion: Our results demonstrate that the Eikonal model yields accurate 

LATs and combined with the boundary element method precise ECGs compared to markedly 

more expensive full bidomain  simulations. However, for an accurate representation of atrial 

repolarization dynamics, diffusion terms must be accounted for in simplified models. 

Significance: Simulations of atrial LATs and ECGs can be notably accelerated to clinically 

feasible time frames at high accuracy by resorting to the Eikonal and boundary element 

methods. 

Index Terms—Atrial electrophysiology, bidomain, eikonal, electrocardiograms, finite element 

method, local activation times, monodomain, P waves.

 I. INTRODUCTION

IN COMPUTATIONAL cardiac modeling, the bidomain  model is the most biophysically detailed 

formulation to compute the spread of the de- and repolarization wavefront and the electrical source 

distribution throughout the cardiac tissue. Furthermore, the finite element method is considered the 

gold standard for computing the body surface potentials from a given distribution of the electrical 
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sources in the heart to extract  electrocardiograms (ECG) at standardized electrode positions. However, 

both methods are computationally expensive and are thus suboptimal for generating large in silico 

datasets of cardiac signals for machine learning applications [1], [2], or for efficiently simulating 

excitation propagation in cardiac digital twin for certain clinical applications such as to guide ablation 

therapy[3].Hence,simplifiedmodelswithfastsolutiontimesare needed to speed up the generation of in 

silico datasets of cardiac signals, such as local activation times (LATs), electrograms or 

ECGsbyseveralordersofmagnitude[4]–[6].Yet,thesignalsobtained with these simplified methods need 

to be physiologically accurate and resemble the results obtained with the bidomain and f inite element 

method.In this work,we therefore aim to quantify the inaccuracies arising in simulated atrial signals 

when resorting to simplified computational methods. While comparisons of this type have already been 

performed for the ventricles [5], [7] and partly also for four chamber heart models [8], a study focusing 

on atrial electrophysiology is lacking to the best of our knowledge. However, this is substantial since 

the atria stand out by a highly complex myocardial fiber structure, locally heterogeneous properties 

regarding ion channel and tissue conductivities and higher anisotropy ratios as compared to the 

ventricles.

 The mono domain, reaction-Eikonal (RE), and the Eikonal  model solved by the fast iterative method 

constitute the simplified propagation models investigated in this work. Forward calculation techniques 

applied in this study comprise the boundary element and the infinite volume conduct or methods. 

Simulations were carried out in sinus rhythm with and without the inclusion of  fibrotic tissue modeled 

as passive conduction barriers [9], slow conducting tissue patches and  rescaled  ion channel 

conductivities  representing  cytokine effects [10], [11]. We assess the errors between simplified 

propagation models and forward calculation methods to the gold standard bidomain and finite element 

formulations with metric sextracted from the simulation results on cellular, tissue and organ scale 

comprising   APDs,  LATs, and  ECGs, respectively.
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 II. METHODS

 A. Model Generation

 An anatomically detailed model of the torso was obtained  by multi-label magnetic resonance image 

segmentation as described in [12]. The contours of atria, ventricles, lungs, liver and torso were exported 

as triangular surface meshes. These were smoothed and resampled with an average edge length of 0.5 

mm, 5 mm, 5 mm, 7 mm and 15 mm, respectively, using Meshmixer (Autodesk, San Rafael, CA, USA) 

and Instant Meshes [13] whereby details were corrected manually in Blender (Blender Foundation, 

Amsterdam, The Netherlands) to avoid intersecting segments and ensure a sufficient mesh quality and 

topology. The segmented atrial endocardial surfaces were fed into the pipeline described in [10], [14], 

[15] to obtain a volumetric tetrahedral bi-atrial geometry with a homogeneous wall thickness of 3 mm 

and an average edge length of 523 μm augmented with inter-atrial connections, labels for anatomical 

structures and myocardial fiber orientation. In contrast to fully personalized approaches where fiber 

orientation can be defined based on information extracted from diffusion tensor imaging data, we 

defined myocardial fiber architecture in a rule-based way as described in [14] building on the solution 

of Laplace’s  [16], [17]. Meshtool [18] was used to generate a tetrahedral model of the full torso while 

preserving the surfaces of the considered organs.Tags for the atrial and ventricular blood pools were 

allocated to all elements in the volumetric torso model located inside the surfaces bounded by the atrial 

and ventricular endocardial  walls with closed valve and vein orifices. A detailed view of the torso and 

atrial model is depicted in Fig. 1.

 Isotropic extracellular conductivityof0.0389S/m,0.028S/m, 0.06 S/m, 0.7 S/m and 0.22 S/m was 

assigned to lungs, liver, ventricles, atrial and ventricular blood pools and the remaining 

torsotissue,respectively,asreportedinpreviouswork[19]–[21].

 In order to conduct comparable experiments with the mono or bidomain model that require 

conductivities, and the Eikonal based models that resort instead to conduction velocities (Cvs), it is 

crucial to consistently associate conductivities and Cvs for all heterogeneous tissue regions in the atria. 

Therefore, anisotropic and locally heterogeneous conductivities were assigned to five different regions 

in the atria comprising regular bulktissue, cristaterminalis,pectinatemuscles,inferioristhmus, and inter-

atrial connections. Cvs  corresponding to the mono domain conductivities reported in [22] for 0.33 mm 

resolution voxel models were therefore first calculated as described in [23]. Using tune CV [24], [25], 

intra- (σi) and extracellular (σe) conductivities as well as the mono domain conductivities (σm) were 

iteratively optimized for the tetrahedral mesh setup  described above while keeping the σi/σe ratio 

fixed. For this purpose, five strand geometries with a length of 10 cm  generated each characterized by a 

resolution corresponding to the average edge length of one of the hetero geneous conductivity regions 

in the atria. Intra- and extracellular conductivities in  longitudinal and transversal fiber direction as 
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reported by Clerc  et al. [26] as well as by Roberts et al. [27] were initially assigned to the elements in 

the slab meshes. In an iterative optimization procedure, the conductivities were adjusted until the CV 

converged to the target value derived from [22]. In this way, the  originally reported intra- and 

extracellular conductivity values were scaled while the ratios between them were kept constant along 

the eigenaxes [25]. In the following, we refer to the tuned  conductivities obtained byinitially assigning 

the values reported  by Clerc [26] and Roberts et al. [27] to the slab meshes as Clerc and Roberts 

conductivities, respectively. The resulting heterogeneous and anisotropic conductivity setup for each 

atrial region is summarized in Table SI in the supplementary material. For the monodomain 

simulations, we considered two different cases which we refer to as “monodomain with and without 

explicit conductivity tuning”. For the first one, we repeated the tuneCV optimization using the 

monodomain propagation model and obtained the monodomain conductivities listed in Table SI in the 

supplementary material. In the second case, we directly computed the monodomain conductivities 

from the tuned intra- and extracellular bidomain conductivities as half  their harmonic mean.

 The Courtemanche et al. cell model [28] was used in the  simulations described in Section II-B. To 

reflect regionally heterogeneous electrophysiology, maximum ion channel conductances were 

rescaled compared to the baseline model as reported in previous work [22], [29] and are summarized in 

Table SII in the supplementary material. The final CV values in longitudinal and transversal fiber 

direction as used for the Eikonal and RE simulations described in Section II-B were subsequently 

calculated with tuneCV [24] based on the tissue  and ion channel conductivity settings in each atrial 

region.

B. Propagation Models

 1) Bidomain Model: The bidomain model represents the  propagation of the electrical de- and 

repolarization wavefront through the cardiac tissue [30]–[32]. Here, the intracellular and extracelullar 

domains are coupled and intertwined in a system of partial differential equations. Solving this system 

provides at each point in the cardiac tissue the intracellular Φi and  extracellular Φe electrical 

potentials:

 where Vm = φi −φe is the transmembrane potential σi and  σe are the intracellular and extracellular 

conductivity tensors, respectively, β is the surface to volume ratio of the membrane, and Cm is the 

membrane capacitance per unit surface. Additionally, Is and Iion are the transmembrane stimulus and 

ionic currents, respectively. The ionic current Iion depends on the state variables η that are calculated 
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with a non-linear system of  ordinary differential equations. To solve the bidomain equation, wedefined 

areference electrode on the anterior, lower left hand side of the torso. Homogeneous Neumann 

boundary conditions were imposed at the boundaries of the myocardial tissue (intraand extracellular 

domains) and the torso (extracellular domain). At the myocardial tissue to torso interface, φe is 

constrained  be continuous and no-flux is enforced in the normal direction n for φi:

 Also at the boundary of the torso that is not in contact with  the myocardial tissue, a no-flux boundary 

condition for φe is  imposed:

 where σ b is the conductivity of the bath (torso).Additionally, the  continuity of the normal component 

of the extracellular current ( 5) and φe at the tissue-bath interface ( 6) is enforced:

Initial conditions of the model were defined by the state variables of the cell 

modelspacedtoalimitcycleat1Hz.Numerical methods used to solve the bidomain model equations rely 

on high resolution meshes which is the main cause of the model’s high computational cost [33]. 

Nonetheless, the bidomain model is considered the most accurate of the available cardiac models for 

tissue level electrophysiology. 

2) Monodomain Model: Assuming that the intra- and extracellular conductivity tensors are 

proportional, i.e. their anisotropic ratios are equal, the bidomain model can be significantly reduced to 

the monodomain model [31]–[33]:

 where σm is the monodomain conductivity tensor. This tensor  can be expressed in terms of half the 

harmonic mean of intraand extracellular conductivity tensors:

 The assumption of equal anisotropy does not fully hold in reality.  However, this model still offers a 

close approximation of the wave propagation. [8]. For a planar wave moving along the f iber directions 

monodomain and bidomain models are exactly equivalent. The extracellular potential field Φe can be 

approximated  from the   monodomain  transmembrane  potentials as a source model by solving the 
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elliptic bidomain (1) at a temporally  coarser scale. However, the volume conductor cannot influence 

the transmembr anevoltaged is tribution in this approach and bath loading effects are ignored.This 

concept is referred to a spseudo bidomain approach [7] and is computationally only marginally more 

expensive than a standard monodomain simulation. The monodomain and bidomain models can be 

discretized in space using different approaches [34]. For this study, we used the finite element method 

[24].

3) Eikonal Model: The Eikonal model is based on the  macroscopic kinetics of the wavefront 

propagation [5], [31], [32], [35]. Solving the Eikonal equation seeks to find the activation times T for 

each node x based on a local speed function:

Where M is the squared CV tensor and T0 are the initial conditions for the activation sites Γ. Although 

Vm is not directly calculated in this model, it can be inferred from the activation times:

where U is an AP timecourse. It was obtained based on a  simulation of a planar wavefront propagating 

in a tissue block from which the transmembrane potential Vm was extracted at a node in the center of 

the mesh. Specific AP timecourse were used in different anatomical regions. Numerical simulations are 

significantly faster because of the simplicity of the equation and lower resolution meshes that are 

required. Unfortunately, the Eikonal model fails to accurately represent the influence of bath loading 

effects, high wavefront curvatures, reentry, and wave-collisions on CV. [5], [36]. In the case of complex 

patterns of activation that occur for example during atrial fibrillation, these limitations become more 

significant. Nonetheless, these simulations still provide a decent approximation of wave propagation 

under healthy conditions. In these case, the shortcomings of the Eikonal model are still present but their 

effects are less pronounced.

 4) Reaction-Eikonal Model: When applied to coarse  meshes,the mono-and bidomain models both 

exhibits lowed CV for a given tissue conductivity [5], [34]. The general RE model uses the activation 

times obtained by the Eikonal model to enable biophysical models to calculate the trans membrane 

potential in coarsemeshes[5].Theresolutionrequirementisrelaxedbecause the thin wave front does not 

need to be explicitly represented.The RE model calculates an Ifoot current to replicate the activating 

effect of the diffusion term on neigh boring cells and applies it to the reaction model at the time given by 

the Eikonal solution. In this work, only the RE+ version of the model is considered (12), in which the 

Ifoot current is added to the diffusion term instead of replacing it.
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   Thus, the activation of the nodes can be achieved by either the diffusion term or the I foot current and 

neighboring nodes also interact during repolarization. The RE+ variant is more accurate when 

comparing to the mono domain model in coarse meshes and the repolarization gradients are 

significantly smoother. However, RE models are unable to activate the same node several times (as for 

example required for simulations of reentry) and share the limitations of the standard Eikonal model 

regarding the influences of wavefront curvature, source sink mismatch and bath loading on CV.

C. Forward Calculation Methods

 When modeling the torso as a passive volume conductor, the  bidomain formulation can be reduced to 

its parabolic part to solve the forward problem of electrocardiography for a given distribution of Vm. 

The Poisson equation in (1) can be solved numerically by discretizing the full torso domain with finite 

elements (finite element method). To comply with the terminology in related work [37], we use the term 

finite element method (FEM) in the following when referring to solving Poisson’s (1) numerically 

using a finite element discretization scheme even  though this discretization scheme was also used to 

solve for  example the bidomain equations. Standard extracellular conductivities were hereby assigned 

to different organs as described in Section II-A. By assuming isotropic myocardial properties in the 

extracellular space, a reduced set of dipole sources can be mapped onto the surfaces bounding the 

organs with different conductivity properties. Then, the boundary element method can be used for 

computing the body surface potentials and the ECG. In the latter case, applying Green formulas and 

boundary conditions as well as assuming equal anisotropy ratios in the intra- and extracellular domain 

allow for reformulating (1) as a surface integral to compute the extracellular potential Φ at any point r 

on the torso surface:

 whereby the minuend describes the potentials attributable to the  sources in an unbounded medium 

with conductivity σT.The subtrahend in (13) accounts for secondary sources introduced by the 

bounded volume conductor. σk − and σk + characterize the conductivities inside and outside the 

respective surface Sk.The potential Φ∞ can be expressed either using the transmembrane voltage 

distribution on the cardiac surface [38] or the primary impressed currents Jp [39] as volumetric sources 

inside the  bounded volume conductor Vh:
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 When computing the ECG using the infinite volume conductor method (IVC), the heart is assumed to 

be immersed in a medium of infinite spatial extent with a homogeneous conductivity σT. This reflects 

in the sum over the surface integrals in (13) being neglected for calculating extracellular potentials on 

the torso surface:

 D. Simulation Scenarios

Simulations were carried out on the bi-atrial volumetric model  described in Section II-A in sinus 

rhythm with and without the inclusion of fibrotic tissue patches. For the former case, several elliptically 

shaped patches with their principal axis aligned to the macroscopic atrial fiber orientation were 

manually defined predominantly on the posterior wall of the left atrium and the left pulmonary vein 

antrum as reported by Highuchi et al. [40]. These regions extended transmurally and are shown in Fig. 

2. To not only account for the patchiness of atrial fibrosis but also for its diffuse deposition, 80% of the 

cells within the elliptical patches were definedasfibrotic. In this way, the volume fraction of left atrial 

fibrosis quantified to 22 % of the total left atrial tissue volume. Remodeled conduction properties were 

assigned the fibrotic regions in three different ways: In the first case, f ibrotic elements were removed 

fromtheatrial mesh and instead assigned to the extracellular domain following the concept of 

percolation [9]. In this way, we introduced passive conduction barriers that do not have a trans 

membrane voltage and thus do not

 contribute to the electrical source distribution on the myocardial  tissue surface. In the second case, 

fibrotic regions were characterized as slow conducting patches with CVsreducedby80%in transversal 

and 50 % in longitudinal fiber direction compared to the healthy baseline case. Conductivities in these 

regions were obtained as described in Section I. In this way, anisotropy ratios were increased by a factor 

of 2.5 in fibrotic areas promoting wave propagation along myocardial fiber orientation and thus 

forming the basis for functional reentry circuits. In the third case, ionic properties of the fibrotic cells 

were remodeled by rescaling the conductances of the sodium (gNa), the  calcium (gCaL)and the inward 

Transaction on Biomedical Engineering Application and Healthcare (Volume - 6, Issue - 2, May - August 2025)                                 Page No - 8

ISSN : 2582-7405   



Transaction on Biomedical Engineering Application and Healthcare (Volume - 6, Issue - 2, May - August 2025)                                 Page No - 9

rectifier potassium current (gK1)  by a factor of 0.6, 0.5 and 0.5, respectively, compared to the baseline 

conductances of the Courtemanche et al. cell model to account for cytokine  remodeling effects [11].

 Sinus rhythm simulations were initiated at a sinus node exit  site located at the junction of crista 

terminalis and the superior venacava.We obtain the transmembrane voltage distribution for the LATs 

computed with the Eikonal model as describedin(11), whereby the respective ionic model parameters 

in each region as listed in Table SII in the supplementary material were taken into account for 

calculating the AP templates.

The Cardiac Arrhythmia Research Package (CARP) [41] and  openCARP [24] were used for 

computing the spread of the depolarization wave with different propagation model saswellas 

ECGswith the finite element and the infinite volume conductor method. The algorithms described by 

Stenroos et al. [39] were used for calculating ECGs with the boundary element method. As 

recommended by Schuler et al. [42], we downsampled the surface mesh bounding the atria to a 

resolution of 2.5 mm for computing the transfer matrix. Furthermore, we applied Laplacian smoothing 

to the transmembrane voltage sources to ensure a continuous wave propagation on the coarse mesh.

E. Evaluation Metrics

 Fromthe source distribution obtained from simulations using  different propagation models, we 

calculated APDs at 90 % repolarization (APD90) for each node in the mesh. Also at each vertex in the 

geometry, we extracted LATs defined as the  timestep with the steepest AP upstroke. For both, APDs 

and  LATs, the accuracy of each propagation model simulation was quantified as the absolute 

difference to the respective value for each metric obtained from the bidomain simulation with the Clerc 

conductivities.

 To assess fidelity of simplified forward calculation methods  along with different propagation models, 

we evaluated the Pearsoncorrelation coefficient of the respective ECGresultswiththe ECGs obtained 

by solving the forward problem with the finite element method based on the bidomain source model  

with the Clerc conductivities.

III. RESULTS

 A. Propagation Models

 The effect of different propagation models on the activation  sequence(LATs)isvisualized inFig. 

3.Thetotalactivation time in the healthy references cenario solved with the bidomain model was 102 

ms. In the top panel, the distributions of the signed differences between the examined propagation 

models’ LATs and the bidomain results obtained with Clerc conductivity ratios evaluated at all mesh 

nodes are visualized as violin plots. In the bottom panel, the difference to the bidomain results are 
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mapped onto the atrial geometry. The mismatch in LATs was most pronounced for the bidomain 

scenario with Roberts conductivities  and much smaller for the simplified propagation models. For the 

Roberts conductivity ratios, the LATs were systematically smaller than the ones resulting from the 

reference bidomain simulation with the Clerc conductivity settings. Furthermore, the error increased 

with the spread of the depolarization wave front leading to small deviations close to the sinus node exit 

site, but errors of up to −14 ms at the latest activated areas at the posterior wall of the left atrium and the 

coronary sinus in the right atrium. The mean and standard deviation of the absolute errors between the 

bidomain and monodomain LATs with and without explicit conductivitiy tuning were 0.93 ± 0.61 

m s a n d 1 . 0 2 ± 0 . 6 4 m s . W i t h t h e t e m p o r a l r e s o l u t i o n o f t h e  s a m p l e d s i m u l a t e d  

myocyteAPsbeing1msandtheLATsbeing calculated as the point in time markingthesteepest 

Apupstroke, in particular the LAT results for the monodomain simulation

 with additional conductivity tuning were below the accuracy  with which the LATs were determined. 

RE+ and Eikonal LAT differences quantified to 1.37 ± 1.16 ms and 1.43 ± 1.17 ms, respectively. The 

signed LAT error to the bidomain results was distributed similarly across the atrial tissue among these 

two propagation models (see Fig. 3 bottom panel). The LAT results in the simulation scenarios 

involving fibrosis remodeling were only slightly different compared to the sinus rhythm results 

depicted in Fig. 3. The largest differences occurred for the Eikonal propagation model in the 

simulations cenario where fibrosis was modeled as slow conducting tissue. There, the absolute error to 

the bidomain results quantified to 1.71 ± 1.46 ms compared to 1.43 ± 1.17 ms in sinus rhythm without 

the inclusion of f ibrosis.
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APD90 results are visualized for the simulation scenario with  f ibrosis modeled as ionic conductance 

rescaling in Fig. 4.For the monodomain simulations, the mean and standard deviation of the absolute 

APD90 discrepancies to the bidomain results obtained with Clerc conductivity ratios were below the 

temporal resolution of the AP time course of 1 ms. Absolute errors to the bidomain simulation with 

Roberts conductivity ratios and the RE+ results quantified to 2.92 ± 3.07 ms and 1.13 ± 1.69 ms, 

respectively. In both cases, the highest errors occurred in regions around the fibrotic tissue patches. 

APD90 results for the Eikonal simulation were characterized by an absolute error to the 

bidomainsimulationresultsof25.1±20.72ms.Furthermore,theAP signal trace obtained from a tissue 

strand simulation and used as a template to infer the transmembrane voltage distribution for  the 

Eikonal LATs is visually clearly distinguishable from the bidomain AP especially in fibrotic regions 

(see Fig. 4 bottom panel).

 ECGs obtained from the transmembrane voltaged is tributions from the simulation scenario with 

fibrosis modeled as ionic rescaling as depicted in Fig. 4 and using the boundary element forward 

calculation method are visualized in Fig. 5. The 12-lead ECG is displayed for a duration of 650 ms 

whereby the signal sections in the interval [0 ms, 150 ms] and [150 ms, 650 ms] represent the P wave 

and the atrial repolarization, respectively. The latter is typically not visible in the ECG of a full 

heartbeat since the repolarization phase of the atria temporally coincides with the ventricular activation 

and the respective signal parts are thus buried within the QRS complex. 

The observed discrepancies in the AP signal course between the bidomain and Eikonal simulation also 

reflects in the ECG. As can be seen in Fig. 5, the repolarization signal obtained with the Eikonal and 

bidomain propagation modeldiffer. In lead aVL, the polarity of the repolarization wave was even 

inverted. Apart from the atrial repolarization ECG signal obtained with the Eikonal model and 

precomputed AP templates, the choice of the propagation model did not markedly influence the ECG as 

the remaining signals in Fig. 5 show only minor differences. Furthermore, the correlation coefficients 

between the bidomain ECG obtained with the Clerc conductivity ratios and the other examined 

propagation models are summarized in Table I for the
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intervals [0 ms, 150 ms] (Pwave),[150ms,650ms](repolariza tion) and [0 ms, 650 ms]. The lowest 

correlation coefficient for the P wave occurred for the bidomain simulation with Roberts conductivity 

ratios. For all simplified propagation models, the P wave correlation coefficients were above 0.92. 

Except for the Eikonal model, the correlation coefficient of the ECG signal sections representing the 

repolarization phase wave was above 0.99. ECG and APD90 results only marginally differed for the 

remaining fibrosis remodeling scenarios as detailed and visualized in the figures S6-S10 in the 
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supplementary material. 

 B. Forward Calculation Methods

 ECGs calculated with different forward calculation methods  based on the same source distribution 

stemming from the bidomain simulation with Clerc conductivity ratios are depicted in Fig. 6 for the 

simulation scenario with fibrosis modeled as slow conducting tissue.The correlation coefficients 

covering the ECG signal parts of the P wave between the gold standard FEM approach and each of the 

BEM and IVC method quantified to 0.94 and 0.83 for fibrosis modeled as slow conducting tissue. 

Especially the IVC method yielded too high ECGs  in the precordial leads and inaccurately captured 

atrial repolarization in the inferior leads II, III and aVF.

 IV. DISCUSSION

 A. Main Findings

 In this work, we compared atrial APD90, LATs and ECGs  computed with the bidomain, monodomain, 

RE+ and the Eikonal propagation models as well as with the finite element, the boundary element and 

the infinite volume conductor forward calculation methods. The largest deviations in LATs were 

observed between the bidomain simulations with Clerc and Roberts conductivity ratios. As the 

absolute LAT errors increase with the propagating wavefront, discrepancies in LATs can be traced back 

to more pronounced bath loading effects occurring in the Roberts conductivity settings. With a higher 

ratio between extracellular bulk and isotropic bath conductivities, the depolarization wave propagates 

faster in close vicinity to the interface between blood pool and endocardial wall leading to earlier LATs 

throughout the cardiac tissue. Due to the thin atrial wall, the bathloading effect is visible transmurally 

and thus leads to globally faster conduction velocities in the bidomain simulation with the Roberts 

conductivity setup. However, in this work, conductivities were tuned as described in Section II-A 

without a bath attached to one face of the strand meshes. Incorporating the bath already in the tuning 

process would have  led to more similar results between the bidomain simulation  results obtained with 

tuned Clerc and Roberts conductivities. This systematic underestimation of LATs also reflects in the 
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ECG. The bidomain simulation with the Roberts conductivity  settings yielded the smallest P wave 

correlation to the bidomain ECGs with the Clerc conductivity ratios and markedly shorter P wave 

duration. Also Sebastian et al. [43] found that the choice of conductivity ratios in the intra- and 

extracellular domain as well as in longitudinal and transversal fiber direction had a marked effect on 

CV and LATs. Intra- and extracellular conductivity values were derived by Clerc and Roberts et al. in 

animal experiment son specimen from excised trabe cularcardiac bundles. Measuring intra- and 

extracellular current flow using micro electrodes allowed for a computation of the resistance and in turn 

the conductivity in longitudinal and transversal fiber direction in both, the extra- and intracellular 

space. Considering the complex and cumbersome in and ex vivo experiments to 

derivetheseparameters,fixedratiosbetweenσi andσe alongand perpendicular to the myocardial fiber 

orientation need to be assumed when personalizing computer models.As a consequence, the high 

uncertainty of the ratio between σi and σe whichcannot be measured patient-specifically with 

reasonable efforts further justifies the application of simplified models that do not involve uncertainties 

in non-measurable entities and only cause minor differences in LATs, ECGs and APD90. Among all 

investigated simplified model solutions, the mono domain model yielded the most accurate results 

regarding activation times, repolarization behavior and ECGs. However, explicit conductivity tuning 

for the mono domain model neither had a notable effect on LATs, nor APD90, nor on the 12-lead ECG. 

With mean and standard deviation of the absolute LAT differences to the bidomain results quantifying 

to 1.37 ± 1.16 ms and 1.43 ± 1.17 ms for the RE+ and the Eikonal model, respectively ,which differed 

onlys lightly due to numerical jitter. The distribution of LAT discrepancies to the bidomain results 

mapped on the atrial geometry was similar for the Eikonal and the RE+ model. The LATs of the 

simplified propagation models were especially higher compared  to the bidomain results in regions on 

the posterior left atrial  wall. In these areas, different wavefronts collided causing an acceleration of the 

wave in the bidomain model, which is not captured in the (reaction-)Eikonal model.Source-

sinkmismatch effects caused by convex wavefronts entailing conduction slowing in the bidomain 

model cause smaller LATs in the Eikonal simulation results. This effect is especially visible in the area 

where Bachmann’s bundle connects to the anterior wall of the left atrium, i.e. where a small 

source(Bachmann’sbundle)meets a large sink (the left atrium). At the apex of the right atrial 

appendage,two convex wave front straver sing the tissue from the lateral and the septal right atrial wall 

collide and cause Eikonal LATs to be smaller than the ones resulting from the bidomain simulation. The 

P waves computed with the reaction-Eikonal and the Eikonal source distribution showed similar 

correlation coefficients of 0.921 and 0.920 to the bidomain results. However, when evaluating 

repolarization dynamics, the RE+ model clearly led tomorepreciseresults.Thisreflectsontheonesidein 

smallerAPD90 discrepancies to the bidomain simulation results. The small APD90 discrepancies 

between the monodomain and RE+ simulation results might have occurred due to differences in the 
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activation pattern or a mismatch between the diffusion  term and the Ifoot current in the case of curved 

wavefronts or wave collisions causing different AP upstrokes and amplitudes which subsequently lead 

to subtle APD changes. On the other hand, the RE+ model is capable of faithfully replicating both the P 

wave as well as the atrial repolarization phase in the ECG, whereas with the Eikonal model, only the P 

wave highly resembles the bidomain results. Using precomputed AP templates to obtain the 

transmembrane voltage source distribution for the Eikonal LATresults, APD90 results were 

systematically smaller compared to the bidomain results in regular bulk tissue regions and 

systematically higher in fibrotic regions. The more precise representation of repolarization behavior in 

simulation results using the RE+ model is due to local APD balancing caused by the diffusion term. 

Consequently, also the repolarization signal in the ECG obtained with the source distribution derived 

from the Eikonal results only showed a correlation coefficient of 0.62 to the bidomain ECG.

    ECGs calculated with the BEM highly resembled the ECGs  obtained with the FEM. P wave 

correlation coefficients to the FEM approach quantified to 0.94 and 0.93 for the simulation scenario 

with fibrosis modeled as slow conducting and non-conductive patches, respectively. In the former 

scenario, transmembrane voltages can be used as a source model for the forward calculation, whereas 

in the latter, volumetric sources such as primary impressed currents were necessary to model the effect 

of passive conduction barrier not contributing to the electrical source distribution in the heart. If the 

surface transmembrane voltages had been used as sources for the forward calculation in this case as 

well, an offset in the isoelectric line in the P wave would have been induced. The infinite volume 

conductor method instead yielded more inaccurate ECG results. Especially in the septal and anterior 

leads, the ECG amplitudes were overestimated by a factor of >2 compared to the FEM results. On the 

one side, this observation can be traced back to the method’s assumption that the atria are immersed in 

an infinite medium of a homogeneous conductivity, which does  not allow considering a heterogeneous 

conductivity setup in the torso. On the other hand, the high ECG errors occurred predominantly in leads 

measured at electrode locations on the body surface in close proximity to the cardiac sources. Thus, 

neglecting the attenuating effect that the bounded torso volume conductor introduces causes a more 

pronounced effect on the resulting ECGs in V1-V3.

Simulations were run on a 16 core CPU machine (Intel Xeon Gold 6230, 2.1 GHz). The full bidomain 

and the pseudobidomain simulation for a duration of 450 ms were completed in 25and1.5hours, 

respectively. Computation time for the RE+ setup was 1.4 hours on a 6 core machine.The computation 

of the transfer matrix for the BEM approach in the case of a hetero geneous torso volume conductor 

with seven surfaces bounding the atria, the torso and other organs took 2 hours on a 4 core CPU machine 

(Intel Core i5, 2.4 GHz). The speed-up in computation times when using simplified propagation 

models is comparable to a ventricular setup. Computational performance improved by one order of 

magnitude when using the mono domain model [7] and up to three orders of magnitude when using the 
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Eikonal or RE+model[4],[5]comparedtobidomain.However,increasing the number of cores the 

simulations are ran on could change  the results regarding algorithmic efficiency as different models 

might exhibit different scalability properties when parallelized to multiple threads or 

processes[44].Solverswithstrongscaling capabilities have been shown to provide the basis for fast 

simulation runs of the biophysically detailed mono domain model without any cutbacks on anatomical 

and electro physiological properties [45]. In the simulations in our study, the degrees of freedom in 

terms of number of nodes and elements in the mesh was the same for all propagation models. High 

resolutions in time and space are required for numerical convergence of the bi- and mono domain 

solution [46]. As described by Wood worth et al. [47], a high mesh resolution is a necessary requirement 

for CV convergence, especially for low conductivities (see also Fig. S3 in the supplementary material). 

On the other side, (reaction-)Eikonal models are capable of faithfully estimating activation time 

sequences on coarser meshes [5], [48]. The computational complexity of the Eikonal model depends on 

the method used to solve it [49], but is approximately O(nlog(n)) with n being the number of nodes in 

the mesh. These properties could be taken advantage of to further reduce computational cost when 

running simulations based on these simplified models.

Computational savings using the BEM approach are on  the one hand due to the decreased problem 

complexity when discretizing the domain with surface instead of volume elements [37]. On the other 

hand, coarser resolution meshes can be applied which is the key influencing factor for an improved 

computational efficiency over FEM [50].

 B. Related Work

 In our work, we studied the differences in activation and  repolarization times when using different 

propagation models in atrial electro physiology, which, to the best of our knowledge, has not been done 

before in a comprehensive way. However,comparable studies have partly already been conducted for 

the  ventricles and four-chamber heart models. Potse et al. [8] found  that activation using bidomain 

was 2 % faster compared to the monodomain approach for a complete cardiac cycle. Also in our study, 

the monodomain activation times were on average 1 mshigher than those obtained from the bidomain 

simulation. Pashaei et al. [51], [52] as well as Wallman et al. [4] found that the differences in activation 

times are small for a ventricular simulation setup when comparing biophysically detailed approaches 

and the Eikonal model. Neic et al. [5] compared extracellular potential fields, electro grams and ECGs 

calculated with the RE and the bidomain model for the ventricles and concluded that the simplified 

model can replicate the gold standard results with high fidelity. Gassa et al. [53] investigated the 

suitability of an RE model to generate re-entrant activity on a bi-atrial geometry and succeeded in 

replicating the wave patterns resulting from a mono domain simulation. We have also recently shown 

that the Eikonal-based models can produce activation times and ECGs resembling full bidomain 
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simulation results  with high fidelity in an atrial model without cellular remodeling placed 

inahomogeneoustorsovolumeconductor[54].Here,we extended the setup to heterogeneous scenarios 

covering cellular and conductivity hetero geneity in both the torso and the atria and observed similar 

results. This work confirms the findings from previous studies mainly conducted for ventricular 

simulation setups.

Previous studies have also investigated the application of  simplified forward calculation methods to 

computed ECGs. Schuler et al. [42] suggest the calculation of ECGs based on the BEM with coarse 

resolution surface meshes bounding the heart and the torso whereby parameters to blur the cardiac 

sources are optimized beforehand to avoid discontinuous wave propagation. In this way, they obtained 

body surface potentials in accurate accordance with the bidomain simulation results for a ventricular 

setup. However, one major drawback of the BEM approach is the impossibility of accounting for 

anisotropic conductivity in the myocardium [37]. However, we found that P wave correlation 

coefficients still quantified to >0.93 showing that the isotropic assumption yields similar ECGs 

compared to the bidomain results. For the infinite volume conductor method instead, not only the 

assumption of is otropicmyo cardial conductivities but also of a homogeneous torso volume conductor 

has to be made. Moreover, the simplified assumption that the atria is immersed in a medium of infinite 

spatial extent holds. Although the general P wave morphology was preserved, the ECG still 

substantially differs regarding peak-to-peak amplitudes in the precordial leads and atrial repolarization 

in the inferior leads as it reflects in our results and was reported in previous work [55]. For the 

application field of computing in tracardiac electro grams, the reader is referred to the review by 

SÃ¡nchez et al. [6]. 

C. Limitations 

In this work, we investigated 4 different simulation scenarios comprising a healthy baseline case and 

three atrial models infiltrated with fibrosis, which was modeled either as slow conductingpatches,non-

conductive conduction barriers orionic  conduct anceres caling.For the spatially distributed fibrotic 

areas (patchy and diffuse), none of the fibrosis remodeling scenarios had a marked effect on the ECG 

compared to the healthy baseline case. Ionic conductance rescaling, slow conducting f ibrotic patches 

and percolation reflect in the ECG as a slight prolongation of the repolarization phase and an offset in 

the isoelectric line, a marginal prolongation of the P wave and a decrease in peak-to-peak P wave 

amplitudes, respectively. However,all these effects on the ECGaresmallandwouldshow up in a more 

pronounced way if different fibrosis remodeling approaches were combined [1]. However, we 

intentionally decided to investigate the effect of different propagation models and forward calculation 

methods in each of these simulation scenarios separately to shed light on which fibrosis remodeling 

aspects can be accurately captured by the simplified model solutions.
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In our simulation setup, we did not consider motion and  contraction of the atria for the sake of reducing 

model complexity and computational cost. Moss et al. showed that a fully coupled electro-mechanical 

model does not have any influence on simulation results regarding atrial activation and that resulting P 

waves exhibit negligible differences to the ones computed on a non-deforming model [56]. However, 

the atrial repolarization results of our study might be affected to a larger extent by the lack of a coupled 

model aspreviousstudiesreportedasubstantial impact of mechanical feedback on electrophysiological 

behavior in the ventricles [57], [58], especially during the repolarization phase [56], [59].

 CVs were derived from the values reported in [22]. Based  on them, conductivities were computed 

using tune CV [25] as described in SectionII- Ausing strand meshes.However,nobath loading effects, 

mesh and wavefront curvature were considered when tuning the CVs,which might lead to mis 

matchingCVsand conductivities assigned to different regions in the more complex atrial geometry. 

Adding a bath in the experiments set up for the tuning process, could lead to more similar LAT and ECG 

results between the bidomain results with Clerc and Roberts conductivities on the bi-atrial geometry. 

Moreover, performing the tuning with a bath attached to the strand geometries would lead to different 

monodomain conductivities for the setups without explicit conductivity tuning while the conductivity 

values in case of explicit conductivity tuning for the mono domain simulation would remain 

unchanged. Conductivities in transverse and longitudinal direction needed to be scaled by a factor of 54 

and 12, respectively. The tuning procedure caused the original transversal vs. longitudinal conductivity 

ratios reported by Clerc and Robertsetal.to change while keeping in tra-vs.extracellular conductivity 

ratios constant. 

The average edge length of the atrial geometry was 523 μm.To quantify the numerical error arising due 

to the mesh resolution, we conducted experiments on a 5 cm × 2cm× 2.8 mm block mesh with a 

resolution of 528 μm and a refined resolution of 265 μm by linearly subdividing the elements (see Fig. 

S2 in the supplementary material). Using the same numerical settings as for the experiments on the bi-

atrial geometry, we ran a simulation of a planar wave passing through an isthmus and then propagating 

with a curved wavefront. Conductivities were  adjusted using tune CV [25] as described in Section I to 

the CV in the regular atrial bulk tissue region. Maximum LAT differences between the experiments on 

the coarse and the fine mesh were 1.2 ms. Considering the total activation time in the block of 43 ms, the 

error introduced by the coarse mesh resolution was 2%. The root mean squared errors between two APs 

resulting from the simulations on the coarse and the fine mesh were 0.0186 mV and 0.0491 mV for the 

two nodes marked in Fig. 2 in the supplementary material. When adding a fibrotic region to the block, 

the maximum absolute LAT error between the experiments on the fine and the coarse mesh was 1.2 ms 

(∼2 %) as well (see Fig. 3 in the supplementary material) for planar wave propagating along fiber 

direction. The latter is approximately also the case in our bi-atrial simulation setup where the 

depolarization wavefront traverses the elliptically shaped fibrotic patches growing predominantly in 
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fiber direction. However,ifanotabletransversewavepropagationhadtobe represented, our chosen mesh 

resolution of 523 μm would have been too coarse to capture the wave propagation at a velocity of 0.15 

m/s. Thus, the mesh resolution chosen for the atrial model in this study mightintroduce 

anerrorof2%,whichisequivalent to an absolute LAT error of ∼2 ms on the bi-atrial mesh. Due to the 

small root mean squared error between the APs of the coarse and the fine mesh, no additional 

discretization error affecting APD90 is expected.

 V. CONCLUSION

 The results presented here show that the Eikonal model is  capable of faithfully producing LATs and P 

waves compared to full bidomain simulations with a reduction of computation times by a factor of up to 

three orders of magnitude. However, propagation models neglecting diffusion terms lack the fidelity in 

terms of repolarization as shown by APD90 deviations. Thus, RE models are needed e.g. in cases where 

repolarization dynamics are of significant importance such as e.g. for re-entry mechanism studies. 

ECGs calculated with the BEM accurately resemble the FEM results for both P waves and the ECG in 

the repolarization phase. When computing ECGs with the infinite volume conductor method, the 

systematic overestimation of peak-to-peak P wave amplitudes especially in the precordial leads should 

be taken into account when evaluating P wave features.
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 Global ECG Classification by Self-Operational
 Neural Networks With Feature Injection

Muhammad Uzair Zahid,Serkan Kiranyaz and Moncef Gabbouj

A B S T R A C T
Objective: Global (inter-patient) ECG classif ication for arrhythmia detection over 

Electrocardiogram (ECG) signal is a challenging task for both humans and machines. 

Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of 

wearable ECG sensors. However, even with numerous deep learning approaches proposed 

recently, there is still a notable gap in the performance of global and patient-specific ECG 

classification performance. Methods: In this study, we propose a novel approach for inter-

patient ECG classification using a compact 1D Self-ONN by exploiting morphological and 

timing information in heart cycles. We used 1D ONNlayers to automatically learn 

morphological representations from ECG data, enabling us to capture the shape of the ECG 

waveform around the R peaks. We further inject temporal features based on RR interval for 

timing characterization. The classification layers can thus benefit from both temporal and 

learned features for the final arrhythmia classification. Results: Using the MIT-BIH 

arrhythmia benchmark database, the proposed method achieves the highest classification 

performance ever achieved, i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for 

normal (N) segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the supra-

ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10% recall, and 95.2% F1-

score for the ventricular-ectopic beats (VEBs). Significance: As a pioneer application, the 

results show that compact and shallow 1D Self-ONNs with the feature injection can surpass all 

state-of-the-art deep models with a significant margin and with minimal computational 

complexity. Conclusion: This study has demonstrated that using a compact and superior 

network model, a global ECG classification can still be achieved with an elegant performance 

level even when no patient-specific information is used.

 Index Terms—Inter-patient ECG classification, operational neural networks, real-time heart 

monitoring, generative neurons.

 I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs) are responsible for  31% of deaths globally, according to the 

World Health Organization (WHO) [1]. It is crucial to detect CVDs as early as possible to begin 

effective treatment and medication.Forcardiac arrhythmia detection, a variety of methods such as 
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blood tests, stress tests, echocardiograms, and chest X-rays have been used. Still, ECGs are perhaps the 

most popular among clinicians. ECGs record the heart’s electrical activity over time and can help 

diagnose many conditions, including premature ventricular contractions (PVCs or V rhythms) and 

supraventricular premature beats (SPBs or S rhythms). An experienced cardiologist can determine the 

presence of an arrhythmia, as an abnormality of heart rate or rhythm or a change in morphological 

pattern, by analyzing a recorded ECG signal. However, identifying and classifying arrhythmias can be 

an erroneous ,labor-intensive ,and subjective task even for cardiologists since it often requires 

considering each heartbeat of an ECGsignalaccumulatedoverhours or days. With the recent advances 

in various low-cost portable ECG devices [2], [3] such as chest straps and wristbands, the opportunities 

for self-monitoring and auto-diagnosis have increased. Therefore, it is highly desirable to have global 

(patient independent or inter-patient) and reliable ECG classification methods. However, robust and 

accurate classification of ECG signals still poses a challenge because among different patients or even 

for the same patient but under different temporal, psychological, and physical conditions, significant 

variations may occur in ECG signals’ morphological and temporal/structural characteristics.

ECG-based arrhythmia classification is typically initiated  with a peak detection/segmentation. This 

study does not discuss R-peak detection since highly accurate algorithms have already been proposedin 

the literature [4], [5]. The analysis and classification of ECGsignals have been extensively studied 

throughout the last decades [6]–[9]. Generally, these works can be classified as intra-patient, inter-

patient (global), and patient-specific [10]. In the intra-patient paradigm, datasets are divided into  and 

test subsets according to heartbeat labels. Therefore, beats from the same individual may appear both in 

training and evaluation subsets, making the evaluation process biased [11]. The classifiers usually 

produce over-optimistic results (in close vicinity of 100%) because the model learns the information 

specific to the patient during the training phase [11]–[13]. The  classification performance declines due 

to inter-individual variability. Hence, morphological variations in ECG from different  patients should 

be considered when building the model. Even  for a healthy subject’s (normal) ECG waveform, the 

shape of the QRS complex, P waves, and R–R intervals may differ from one beat to the next under 

various circumstances [14]. Chazal et al. [15] presented the inter-patient paradigm where training and 

testing heartbeats are collected from different patients’ ECG recordings to adopt real-world scenarios. 

Some patients are reserved for the evaluation phase and beats from other patients are used to train the 

classifier so that classifier would exhibit a better generalization capability for new unseen patients. 

Most researchers have chosen to use another approach called the “patient-specific” paradigm, i.e., [9], 

[16]–[18] in which other patients and patient-specific beats of a new patient are jointly used to train the 

network. Although the patient-specificparadigm is superior to inter-patient paradigms in terms of 

performance, it requires cardiologists’ labeling in advance for each (new) patient, which is 

cumbersome, subjective, and labor-intensive. Furthermore, a new network should always be trained 
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from  scratch or fine-tuned carefully to achieve the required generalization. Only then one can evaluate 

and test its reliability, all of which limit its clinical application. Especially, the training of these 

personalized models requires the collection of patientspecific arrhythmic data, which requires long-

term monitoring or even may not exist. As the data volume increases, it becomes difficult or even 

impossible to manually label small chunks of data from all stored records. In a recent work [19], an 

adaptive patient-specificheartbeatclassificationmodelisproposedfordiagnosing heart arrhythmias. A 

general classifier was first trained on the general population. Then, the weights in the lower part of the 

general classifier were retained using  i-vectors and the weights in the upper part were randomized.

 For several decades ,feature engineering-based methods dominated ECG signal recognition. Studies 

[20]–[23] based on traditional signal processing and machine learning methodologies have not been 

successful inclinical settings.This is because there can be significant variations in the morphological 

characteristics and temporal/structural dynamics of ECG signals for different patients or even the same 

patient under varying physical, psychological, and temporal conditions. Such hand-crafted feature 

extraction may not capture the actual characteristics of each ECG beat variation for accurate 

classification. Therefore, their performance level varies significantly in large ECG datasets [24]. 

Moreover, extreme performance variations may occur due to increased noise levels, different ECG 

sensor types, inter-patient variations in ECG signals, and different arrhythmia prevalence between 

databases.

Mariano et al. [25] extracted features using both leads of  ECG, wavelet transform, and RR intervals. 

The floating feature selection model was used to reduce the feature set, and finally, eight features were 

fedin to the classifier. Canetal. [26] extracted  morphological features using wavelet transform and 

dynamic features using RR intervals. A combination of these features is then fed into the SVM 

classifier. The authors reported an overall accuracy of 86.4% in the patient-specific evaluation. In 

ano ther  s tudy  [27] ,  a  weigh ted  var ian t  o f  the  condi t iona l  random f ie lds  

classifier(CRF)wasusedwithL1regularizationandachievedan accuracy of 85%. Khorrmi et al. 

conducted a comparative study of feature extraction and classification methods. The Discrete Wavelet 

Transform (DWT), Continuous Wavelet Transform CWT), and Discrete Cosine Transform (DCT) 

were compared  to extract features. Similarly, a comparison between a multilayer perceptron (MLP) 

and a support vector machine (SVM) was presented as a classifier [28]. Karpagachelvi et al. combined 

discrete wavelet transform with high-order statistics and AR modeling to extract features, while 

extreme learning machines (ELMs) were used for classification [29]. For feature extraction, the 

authors used a vector cardiogram-based ECG representation. Features were selected using the particle 

swarm optimization algorithm to feed into the SVM classifier [30].

   The development of deep learning models has led to the  widespread use of neural networks in many 

applications, including face detection, image denoising, image classification, and numerous one-
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dimensional signal processing. Recently, one-dimensionalconvolutionalneuralnetworks(1D-

CNN)have also been extensively studied because of their speed and efficiency when managing 

complex tasks, as demonstrated by various applications involving signal processing [31], [32], motor 

fault detection [33], and advance warning system for cardiac arrhythmias [34]. In a study by Kiranyaz 

et al. [35], only three layers of acompact1DCNNwereusedforpatient-specificECG classification. To 

train each personalized classifier, the authors used only the first 5-min section of the record and 245 

common beats randomly selected from the train partition of the MIT-BIH dataset, following the AAMI 

recommendations [36].

Several global ECG classification methods [29], [37]–[41]  based on deep CNN models have recently 

been proposed. They naturally have high complexity and require large volumes of labeled ECG data for 

training. In addition, because they require parallelized hardware to function, they cannot be directly 

implemented on low-power or mobile devices. Finally, most methods tested on unseen patients do not 

perform well in the inter-patient paradigm. As opposed to beat-wise classification, alternative deep 

learning approaches used ECG segments instead. In their study, Acharya et al. used two and five 

seconds of ECG data with a 10-layer CNN model [42]. The deep network architecture proposed by Li et 

al. consists of densely connected CNNs (DenseNet) further connected to gated recurrent units (GRU). 

10-second ECG segments were analyzed, and the F1 score was only 61.25% for SVEB detection and 

89.75% for VEB detection [43]. The results have shown that even with deep network models, 

especially the SVEB detection performance is relatively poor in general, which hinders their clinical 

usage.

Recent studies [44]–[49] have pointed out that CNNs are  homo geneous networks with an ancient 

linear neuron model that originated in the 1950s (McCulloch-Pitts). The linear neuron model is a crude 

representation of biological neurons with  specialized electrophysiological and biochemical properties 

in highly heterogeneous biological networks [29]. Following this, Operational Neural Networks 

(ONNs) [44], [50] have been proposed to address such drawbacks. ONNs derived from Generalized 

Operational Perceptrons (GOPs) [44]–[49] are heterogeneous networks with a nonlinear neuron 

model, which permits them to learn highly complex and multimodal functions or spaces with minimal 

network complexity and training data. Studies [51]–[53] have proposed the latest ONN variant, 

SelfOrganized ONNs (Self-ONNs), for various image processing and regression tasks.
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 In this study, we propose a novel inter-patient ECG classification approach to address the 

aforementioned issues. The proposed method is based on compact 1D Self-ONNs, with feature 

injection/fusion ability. In our method, normalized ECG signals are divided into 230 samples (639 ms) 

of fixed-duration frames using the R peak as a reference point. To accomplish a multi-scale 

representation, each frame is decomposed into the time-frequency domain using Discrete Wavelet 

Transform (DWT) at nine different scales to achieve the scale invariance. As arrhythmia affects not 

only the morphology of the heart cycle but also varies the timing of beat, four R-R intervalbased 

features are extracted and injected into the Self-ONN model to enrich the learned features. We evaluate 

the proposed approach on the MIT-BIH database. Overall, the novel and significant contributions of 

this study can be enlisted as follows:

 1. Wedeveloped a compact architecture with 1D Self-ONN  layers for global ECG classification that 

significantly outperforms all state-of-the-art methods.

 2. This is the first study that proposes Self-ONNs with  feature injection to perform a joint 

classification in the same network.

 3. A multi-scale approach using DWT is proposed to transform the raw ECGsignal before feeding it to 

the network and thus achieve the scale invariance.

4. Finally, over the MIT-BIH benchmark dataset, we show  that without changing or fine-tuning the 

model,the performance of our model remains the same for unseen patients despite the morphological 

variations.

 The rest of the paper is organized as follows: Section II  outlines the ECG datasets used in this study. 

The proposed approach is presented in Section III. In Section IV, the performance of the proposed 

system is evaluated over the MIT-BIH database using the standard performance metrics, and theresults 

are compared with the recent state-of-the-art works. Finally, Section V concludes the paper and 

suggests topics for future  research.
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 II. 1D SELF-ORGANIZED OPERATIONAL NEURAL NETWORKS

 Fig. 1 shows 1D nodal operations of a CNN, ONN with  fixed (static) nodal operators, and Self-ONN 

with generative neuron which can approximate any arbitrary nodal function, ψ, (including the 

conventional types such as linear, exponential, Gaussian, or harmonic functions) fore achkern 

elelemen to feach connection. With such generation ability, obviously, Self-ONNs have the potential to 

achieve greater operational diversity and flexibility, allowing the optimal nodal operator function to be 

formed for each kernel element to maximize the learning performance. Another crucial advantage over 

conventional ONNs is that Self-ONNs do not use an operator set library or a  search process to select 

the best nodal operator. The Qth order truncated approximation, formally known as the Mac Laurin 

polynomial ,takes the form of the following finite summation:

The above formulation can approximate any function  ψ(x) sufficiently well near 0. When the 

activation function bounds the neuron’s input feature maps in the vicinity of 0 (e.g., tanh) the 

formulation of (1) can be exploited to form a composite nodal operator where the power coefficients,                           

                  learned parameters of the network during training.

 It was shown in [52] that the nodal operator of the kth generative neuron in the lth layer can take the 

following general form:
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where K is the size of the 1D kernel of the ith neuron at layer l. One can simplify (3) as follows:

 Hence,the formulation can be accomplished by summation of  Q1Dconvolution operations. Finally, 

the output of this neuron can be formulated as follows:

 where bl  k is the bias associated with this neuron. The 0th order term, q = 0, the DC bias, is omitted as 

its additive effect can be compensated by the learnable bias parameter of the neuron. With the Q = 1 

setting, a generative neuron reduces back to a convolutional neuron. 

The raw-vectorized formulations of the forward propagation, and detailed formulations of the Back-

Propagation (BP) training in raw-vectorized form can be found in [52] and [53].

 III. METHODOLOGY

 The proposed global ECG classification approach is illustrated in Fig. 2. The single-channel raw ECG 

signal is the first unit normalized and partitioned into the segment of 230 samples. Then continuous 

wavelet transform is employed to convert the 1-D ECG beat into a nine-channel time-frequency beat 

representation (9x230) which is fed into the proposed 1D Self-ONN model. The temporal features are 

then injected into the Self-ONN classifier to accomplish the final classification of the ECG beat.
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A. Problem Formulation

 In general, abnormalities in the ECG signals can be linked  to two main aspects: ECG beat morphology 

(morphological variations) and the time interval between ECG beats (temporal

 

variations). As illustrated in Fig. 4, the top figure shows a  premature beat (temporal variance between 

R peaks), and the bottom figure shows ill-shaped QRS complexes (morphological variance). The 

morphology of each heartbeat plays a vital role in classifying arrhythmia. Moreover, the timing or 

location of the heartbeat is also a crucial feature. Segment-based classification can detect abnormalities 

without looking at timing data explicitly since the input is based on multiple beats or cardiac cycles. On 

the other hand, when a continuous ECG signal is divided  into frames, each with a single beat, this will 

cause the loss of temporal information. It is relatively difficult to distinguish a beat from another by just 

examining its morphology. As can be seen in the figure, a regular N-beat and S-beat look similar. 

However, exploiting the beat location makes it easy to distinguish between them. This is the main 

reason for injecting the R-R-based features into the feature representation learned from Self-ONN 

layers to make the final classification.

B. Data Processing

 Beat Segmentation: Each heart beat’smorphology is crucial to  classifying arrhythmias. In some 

studies, the R peak is used as a center to segment the ECG signals. However, this is not a good approach 

in practice as the QT interval is approximately double the PR interval in duration. We do not need the 

morphological information before the P wave as it falls within the previous heart cycle boundary. PR 

intervals are generally between 0.12 and 0.20 seconds in duration and extend from the onset of  the P 

wave to the beginning of the QRS complex. The QRS complex usually lasts between 0.06 and 0.10 

seconds. The QT interval can range from 0.20 to 0.44 seconds depending upon heart rate. To avoid any 

information loss, the upper bound of each duration is considered. A detailed description of one ECG 
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cycle and its waves are presented in Fig. 4. By keeping the   upper bound of these intervals and 

sampling frequency of 360Hz into consideration, the ECG signal from a single channel was segmented 

into heartbeats using the R peak as a reference point, taking 250msec before and 390msec after the peak

 Temporal Features: In order to derive information about the  timing of the ECG beat or, more precisely, 

about the temporal variation, we extracted four widely used R-R-based features, i.e., prior R-R interval, 

post R-R interval, a ratio of prior to post R-R interval and average R-R interval over ±10 seconds from 

the current beat.

 Multi-scale ECG representation: Multi-scale ECG representation plays an important role in the 

classification of ECG signals . Any feature that can be used to discriminate abnormal beats from normal 

ones can be revealed in different frequency scales. Such features can represent the time-

frequencycharacteristicsof the raw ECG signal. Some prior studies have investigated several methods 

for transforming ECG signals into different scales before feeding them to the classifier network. 

Among them, the DWT is considered to be the most efficient for processing ECG signals. When using 

DWT, ECG information can be retrieved both in the frequency and time domains, which is far superior 

to the DFT, which can only analyze ECG information in the frequency domain. This study applies 

DWT based on the Ricker (Mexican-hat) wavelet to transform ECG beats at nine different scales to 

generate one-dimensional DWT patterns in each scale. The overall multi-scale representation can be 

viewed as a 9channelrepresentationoftheoriginalsignalindifferentsubband frequencies. Fig. 3 shows 

examples of DWT transformation patterns from normal and arrhythmic ECG signals .Over an ECG 

segment x(t), its DWT with respect to a given mother wavelet  ψ is defined as follows:

where a is a scale parameter and b is a translation parameter. The scale can be converted to frequency by

where Fc is the center frequency of the wavelet basis, fs is the  sampling frequency of the signal.In this 

study,we used a specific  set of 9scales. The corresponding band frequencies of the scales  range from 

10 Hz to 90 Hz with a gap of 10 Hz.

 Finally, we used the Ricker wavelet basis defined as

C. Data Augmentation

 To achieve a more balanced distribution of classes so that  under represented arrhythmias would 

become more prominent, we augmented the arrhythmia beats instead of excluding the majority class 

samples during the training of the classification model. Data augmentation is crucial to achieving the 

network’s robustness and invariance with limited or imbalanced training samples across different 
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classes. We found that arrhythmia beats (S and Vbeats) are far less frequent than the normal beats in the

 MIT-BIH dataset. As described in [5], we generated augmented  arrhythmic rhythms fromthe20-

second ECG segments containing one or more arrhythmia beats by adding baseline wanderand motion 

artifacts from the Noise Stress Test Database [55].

 D. Network Architecture

 We have implemented the 1D Self-ONN model as illustrated  in Fig. 2. This model, in brief, consists of 

two operational layers to extract learned features, fused with the injected temporal features, and two 

dense layers to analyze the combined features for classification. The first operational layer has 32 

neurons with a filter size of 1x3, followed by a max-pooling layer of size 1x7. The second operational 

layer has 64 neurons with a filter size of 1x3, followed by an adaptive max-pooling of size 1x1, which 

applies the 1D adaptive max pooling over an input signal composed of several input planes. Both Self-

ONN layers are followed by batch normalization and a hyperbolic tangent activation function (tanh). 

The output feature maps of operational layers are concatenated with the injected temporal features and 

fed into the dense layer where there are 32 neurons followed by rectified linear activation function 

(ReLu). The network’s output layer size is 3, which computes the class score corresponding to each 

ECG class.

 IV. EXPERIMENTAL RESULTS

 In this section, we first present the benchmark dataset, MIT BIH, used for training and evaluation of the 

proposed approach. Then the metrics used for evaluating the proposed approach will be presented. 

Next, we will present a comprehensive set of experiments and comparative evaluations against the 

current state-of-the-art methods from the literature over the MIT-BIH dataset.

 A. Dataset

 As the gold-standard benchmark dataset, the MIT-BIH arrhythmia dataset [56] was used for 

performance evaluation in this study. Each recording on the MIT/BIH dataset is about a 30-

minutedurationandincludestwo-channelECGsignals.Each record is taken from the 24-hour ECG 

signals of 47 subjects. Every ECG record is preprocessed using band-pass filtering at
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 0.1–100 Hz and then sampled at 360 Hz. Independent experts  have annotated both timing and beat 

class information in the database. Advancement of Medical Instrumentation (AAMI) classifies 

heartbeats in this database into 15 classes. Further, it divides them into five categories, which are 

normal (N), supraventricular ectopic beats (SVEB), ventricular ectopic beats (VEB), fusion beats (F) 

and unknown beats (Q), as shown in Table I. While the MIT-BIH arrhythmia dataset is frequently used, 

few studies follow the AAMI class division scheme and a more realistic evaluation protocol (inter-

patient paradigm).

A widely used data division method proposed by de Chazal et al. [11] is utilized to split the database in 

order to make a fair comparison with existing works. ECG recordings from 44 patients were divided 

into two datasets: DS1 and Ds2, each containing ECG data from 22 recordings of approximately equal 
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proportions of beat types. There are approximately 50000  heartbeats in both partitions, including 

routine and complex arrhythmia recordings. The first dataset (DS1) was used to train andvalidate the 

classifier, while the second dataset (DS2)served as the basis for the final performance evaluation.

In Table II, ECG record partitions and the number of heartbeats for each class are presented. According 

to the AAMI recommended practice, we removed the four recordings (102, 104, 107, and 217) 

containing paced beats from the analysis because those patients were all wearing cardiac pacemakers 

that could potentially interfere with the analysis. Among the 44 ECG records from the MIT/BIH 

arrhythmia database, there are records withpatientIDsintherangeof100to124thatreflect the common 

clinical ECG patterns. Other patient records with patient IDs ranging from 200 to 234 contain less 

common to very rare arrhythmia beats including ventricular, junctional, and supraventricular 

arrhythmias.

 B. Evaluation Metrics

 In this section, we present five of the most commonly used  performance metrics to evaluate 

arrhythmia classification methods: accuracy (Acc), specificity (Spe), sensitivity (Se), positive 

predictive (Ppr), and F1-score. The majority class figures can significantly distort overall accuracy.As 

the classes for heartbeat types in the MIT-BIH database are highly imbalanced, the other four metrics 

are more relevant to compare the methods.

 where TP is true positive,TN is true negative,FP is false positive  and FN is false negative. As in the 

competing methods, we evaluated the classification performance for N, S, and V beats  individually.

 In addition, receiver operating characteristics (ROCs) were  used to illustrate the diagnostic ability of a 

binary classification system with different thresholds of discrimination (specifically SandVbeats).Due 

ISSN : 2582-7405   



Transaction on Biomedical Engineering Application and Healthcare (Volume - 6, Issue - 2, May - August 2025)                                 Page No - 36

to the wide range of thresholds, RO Ccurves   can provide comprehensive information regarding 

performance.

 C. Experimental Setup

 The proposed Self-ONN model is implemented using the Fast ONN library, a fast GPU-enabled library 

developed in Python and PyTorch to implement and train operational neural networks. The optimized 

PyTorch implementation of Self-ONNs is publically shared in [57]. The Adam optimizer is used with a 

learning rate (LR) of 0.01 and an LR scheduler, which drops by 0.1 every 10 epochs. Kaiming initializer 

was used to initialize the weights of the model. The model is trained for 35 epochs with a batch size of 

128. Patient-wise, 5-folds cross-validation is used to train the model and tune the hyper-parameters. We 

used the cross-entropy loss as the objective function for training the network [2], which is then summed 

over all the samples in a mini-batch. The experiments were conducted on a computer equipped with an 

Intel Core i7-8750H, 16GB memory, 6 GB

NVIDIA  GeForce  GTX 1060 graphics card, and a 2.21 Ghz  processor.

 Additionally, the only parameter of the 1D Self-ONN (aside  from the network configuration and the 

common hyperparameters) is the setting of Q (the order of the Taylor polynomial), which represents the 

degree of non-linearity for each neuron. When this value is set high, higher-order polynomials can be 

generated, resulting in a higher degree of nonlinearity, but at the expense of increasing the number of 

network parameters and complexity. In contrast, setting it too low will result in the opposite outcome. 

Setting it to Q = 1 will result in Self-ONN being identical to a CNN, resulting in reduced learning and 

generalization performance. In order to achieve a balanced network, we choose Q = 3for all 

layers/neurons.
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D. Performance Evaluation

 Two experiments were conducted so that we could compare the model’s performance in real-world 

scenarios and demonstrate the robustness of the model. To begin with, we treated the ECG records in 

DS2 as unseen patient records and used those records as the test set, whereas 

Ds1wasusedformodeltraining. Next, we will swap the training/evaluation sets, i.e., training on 

DS2andevaluationonDS1.Thethreemajorclasses(N,SandV) were considered in the experiments, while 

the other two classes, F and Q are ignored as in several studies [30]. In Table III, the confusion matrix is 

shown for all the records in both partitions of data (DS1 and DS2) of the MIT-BIH arrhythmia database 

using Q = 3 in all Self-ONN layers. A more extensive and accurate comparison of performance 

evaluation is conducted

 

by comparing the performance of the proposed system with the  six existing algorithms, including the 

self-ONN network model, presented in [53]. Table IV presents the performance metrics of all methods.
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 Several interesting observations can be made from the results  in Table IV. First, for S-beat detection, 

sensitivity and positive predictivity rates are comparably lower than V-beat detection, while a high-

specificity performance is achieved. The first and foremost reason for slightly worse performance in 

detecting S-beats as compared to V-beats is that the S class is under represented in the training data,and, 

hence, relatively more S beats are misclassified as normal beats. Another reason is the pattern-wise 

similarity of the S and N beats. Sometimes it becomes almost impossible to distinguish S-beats from 

the N-beats even with a trained eye. In some records (e.g., patients 202, 222, 232 and 234) several S 

beats are present in the sequence, yet only the first S beat displays the timing anomaly, while the others 

are usually perfectly symmetric but with considerably reduced  time intervals. For example, Patient 

234 has an episode of  junctional tachycardia which last around 25 seconds. It has 50 consecutive beats 

of supraventricular ectopy (S-beat). The 5 seconds interval of consecutive S beats from this patient’s 

ECG record is showning Fig. 5. This issue arises as the proposed method is limited to beat-by-beat 

classification. All algorithms that target beat-by-beat classification will eventually suffer in the 

patient’s recording with consecutive S beats. But the proposed method has a superior learning 

capability and hence the overall performance specially for S beats is much improved compared to 

earlier “global” ECG classification methodologies in the literature.

The results clearly indicate that the proposed approach

 achieved the topper formance in all metrics for Nand S beat classification .For V beats,the topper 

formance has been achieved for positive predictivity (Precision) while competitive performance levels 

have been achieved with the two competing methods for sensitivity and specificity. However, one can 

note that in [58],

 [30], and[59],slightly better specificity levels are obtained at the  expense of low (<80%) positive 

predictivity (precision) levels as shown in red in the table. Similarly, [60] and [58] obtain slightly better 

sensitivity levels; however, their performance levels are quite low in other metrics, including S beat 

classification (e.g., [58] obtained as low as 30.44% precision level in S-beat classification). The 1D 
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Self-ONN model in [53] achieved the top  specificity level in V beat classification; however, it failed in 

S beat classification too. Such poor performance levels make those competing methods useless and 

unreliable in clinical practice. Finally, our approach has led to significant improvements in arrhythmia 

beat detections, especially in S beat classification in all performance metrics over all competing 

methods. The performance gap sometimes reaches to 30% or even above against [30], [53], [58], [59] 

and [61].

 In Fig. 6, the ROC curves for the proposed method are plotted  to show the diagnostic ability of binary 

classifiers (S Vs Non-S and VVsNon-V). The ROCcurve shows the trade-off between sensitivity (or 

TPR) and FPR (or 1-specificity). Classifiers that give curves closer to the top-left corner indicate better 

performance. It is obvious from the ROC curves and area under the

 curve (AUC) that the proposed system is doing an excellent job  in the detection of S and V beats.

 E. Computational Complexity Analysis

 As part of the computation complexity analysis, the total  number of layers, total number of neurons, 

and total number of trainable parameters for each network configuration are calculated and reported in 

Table V.

 As the numbers in the table indicate, along with the compact  CNN model proposed in [61], the 

proposed 1D Self-ONN architecture is the most compact, shallowest network architecture with the 

least number of parameters. Obviously, the compact  CNN model in [61] yields the worst performance 

level in all metrics shownin TableV .Simultaneously ,the proposed method with a similar 

computational complexity achieves the best performance levels with a significant margin in general.

V. CONCLUSION

 We have presented a novel approach for classifying heart  rhythms from ECG recordings without using 

anypatient-specific data. With the proposed feature injection scheme into the SelfONN network, our 

approach exploits both morphological and temporal information of ECG beats to maximize the 

classification performance. Another critical factor is that each ative neuron in an operational layer is 

capable of optimizing  the nodal operator function of each kernel. Such neuron-level heterogeneity 
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further improves the network diversity and, thus, the learning performance. Finally, with the employed 

multiscale signal representation, a high degree of discrimination is accomplished when dealing with 

normal and arrhythmic ECG signals, especially the S beats. An extensive set of comparative 

evaluations, performed on the benchmark MIT/BIH arrhythmia database, revealed that our approach 

outperforms all state-ofthe-art methods usually with a significant performance gap in SVEB detection. 

Only the proposed approach can consistently achieve sufficiently high-performance levels required for 

clinical usage among all the competing methods. Finally, this pioneering study significantly narrows 

the performance gap between global and state-of-the-art patient-specific approaches such as [53] and 

[62]. Besides the performance superiority, the proposed model is also compact, and thus it can be used 

in real-time, especially over low-power mobile devices. Due to its highly accurate ECG classification 

without patient-specific labeled data, our method can serve as an additional diagnostic  tool in clinical 

settings as well as for wearable ECG sensors such  as wristbands or smart watches. In future work, we 

plan to further improve the performance and reduce the complexity of the model by exploring 

improved neuron models in Self-ONNs such as the super (generative) neuron model [63]. Additionally, 

we intend to expand our research on arrhythmia classification and its generalization to Holter ECGs 

with low-quality ECG records. In a recent study [64] we showed that the performance of R peak 

detection drastically decreases when algorithms that are developed for clean ECG signals are applied to 

noisy and low-quality Holter ECG data. For this purpose, we are planning to use the China 

Physiological Signal Challenge (2020) database (CPSC-DB) [65], [66], the  largest Holter ECG 

database which contains more than one million beats.
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A B S T R A C T
Background: Electrical impedance measure ments have become an accepted tool for 

monitoring intracardiac radio frequency ablation. Recently, the longestablished generator 

impedance was joined by novel local impedance measurement capabilities with all electrical 

circuit terminals being accommodated with in the catheter. Objective: This work aims at in 

silico quantification of distinct influencing factors that have remained challenges due to the lack 

of ground truth knowledge and the superposition of effects in clinical settings. Methods: We 

introduced a highly detailed in silico model of two local impedance enabled catheters, namely 

IntellaNav MiFi OI and IntellaNav Stablepoint, embedded in a series of clinically relevant 

environments. Assigning material and frequency specific conductivities and subsequently 

calculating the spread of the electrical field with the finite element method yielded in silico local 

impedances. The in silico model was validated by comparison to in vitro measurements of 

standardized sodium chloride solutions. We then investigated the effect of the withdrawal of the 

catheter into the transseptal sheath, catheter-tissue interaction, insertion of the catheter into 

pulmonary veins, and catheter irrigation. Results: All simulated setups were in line with in vitro 

experiments and in human measurements and gave detailed insight into determinants of local 

impedance changes as well as the relation between values measured with two different devices. 

Conclusion: The in silico environment provedtobe  capable of resembling clinical scenarios and 

quantifying local impedance changes. Significance: The tool can assists the interpretation of 

measurements in humans and has the potential to support future catheter development. 

Index Terms—Ablation, atrial substrate, bioimpedance, cardiac electrophysiology, local 

impedance, radio frequency ablation.

 I. INTRODUCTION

ELECTRICAL impedance measurements have a long his tory in the medical and biomedical field. 

Historical studies have shown that different kinds of biological tissues are characterized by different 

conductivity spectra [1] attributed to the microscopic composition of the materials [2]. Besides the 

composition of the material and the measurement frequency, electrode arrangement and temperature 

are major determinants of the measured impedance.
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 During invasive cardiac electro physiological studies, genera tor impedance measurements have been 

an established method to monitor the delivery of radio frequency energy during ablation since decades 

[3], [4]. The transthoracic impedance of the radio frequency energy delivery pathway between an 

intracardiac and a cutaneous dispersive electrode assists differentiation of tissue contact during 

ablation. However, the bulk impedance of the torso blurs measurements [5], [6] and impedes detailed 

assessment of tissue characteristics in the region of interest next to the catheter. Recently, two novel 

catheters have been introduced to the market that aim at a more locally focused impedance assessment 

in the vicinity of the catheter with all injecting and measuring electrodes being built into the 

intracardiac catheter itself [4]. The radio frequency ablation catheters IntellaNav MiFi OI [7] and 

Intella Nav  Stablepoint [8] (Boston Scientific, Malborough, MA, USA) come with a four-electrode 

and a three-electrode impedance measurement circuit implemented within the catheter, respectively. 

During ablation, the so-calledDirectSensetechnologymeasuresthemagnitudeofthe local impedance 

(LI). An LI drop resulting from a combination of resistivet issue heating and subsequent my ocardial 

destruction and lesion formation is used as a surrogate for lesion quality and durability [7], [9]. 

Compared to the trans thoracic generator  impedance, the LI emphasizes local changesin impedance 

while beinglesssusceptibletofarfieldartifacts[9]–[12].Despiteanincreased influence of the local 

surroundings on the measurement compared to the generator impedance, the LI is still sensitive to the 

three-dimensional arrangement of materials and their properties surrounding the catheter [13]. LI may 

therefore not be mistaken for lumped impedance measurements ,which condense all influencing 

properties to an infinitesimal element. Besides the monitoring of ablation lesion formation, LI has also 

shown potential to characterize cardiac tissue and differentiate between healthy myocardium and 

fibrotic or scar tissue [10]–[12]. Atrial  ibrillation as the most common sustained cardiac arrhythmia 

poses a major burden for both patients and global health care systems. Since current treatment 

approaches result in unsatisfactory success rates, novel methods of tissue characterization such as the 

LI need.

 A major challenge in the expansion of the diagnostic value  of intracardiac LI measurements are 

confounding factors. Not only different tissue compositions but also the distance and angle between the 

catheter and the tissue, the surrounding tissue geometry, an overlap of catheter and transseptal sheath, 

and sodium chloride (NaCl) solution irrigation influence the measurement, amongst others. Many of 

these effects can be observed in in human studies but lack quantification due to the superposition of 

multiple effects and an unknown ground truth. Therefore, the differentiation between the target 

measure and confounding factors has remained uncertain. In vitro and ex vivo experiments can help to 

shed light on different scenarios but are costly and depending on the experimental setup, the underlying 

ground truth still remains under-determined.
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 In this work, we present for the first time a highly detailed in  silico framework that models the Intella 

Nav MiFi OI catheter and the IntellaNav Stablepoint catheter in combination with different clinically 

relevant surroundings. After validation of  the framework by in vitro measurements in standardized 

setups, clinically relevant scenarios such as the effect of the distance and angle between catheter and 

tissue, scar tissue, the insertion of the catheter into a pulmonary vein or a transseptal sheath, and NaCl 

solution irrigation were investigated and compared to in vitro and in human measurements. With a 

highly detailed comparison between different catheter geometries and the investigation of isolated 

scenarios to quantify various clinically relevant effects, this work paves the way for an inexpensive 

enhancement of the understanding of intracardiac LI measurements and future catheter development.

 II. METHODS

 A. In Silico — Geometrical Setup

 Both clinically available LI enabled radio frequency ab lation catheters were modeled in high detail as 

depicted in Fig. 1(a) to (d). Measures were taken from product specification sheets [14], [15] as well as 

calibrated photographs yielding a resolution below 100 μm.

 The IntellaNav MiFi OI comes with a 4.5 mm tip electrode, three ring electrodes of 1.3 mm width and 

2.5 mm spacing,
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three evenly distributed mini electrodes of 0.8 mm diameter  embedded in the tip electrode, six 

irrigation holes, and a cooling chamber filled with NaCl solution. The interior of the catheter is 

electrically isolated from the electrodes and accommodates thin electrical and mechanical steering 

wires. While neglecting the  latter, the interior of the catheter shaft was filled with insulating  material 

in the model.

 The Intella Nav Stable point is similarly composed of a 4 mm  tip electrode, three ring electrodes of 1.3 

mm width and4.0mm| 2.5 mm | 2.5 mm spacing, six irrigation holes, and a cooling chamber filled with 

NaCl solution. The tip does not embed any mini electrodes. Proximal to the tip, the diameter expands 

conically to the shaft diameter.The existence of the force sensing spring between the tip electrode and 

the distal ring electrode in the interior of the catheter [8] was assumed to be negligible with respect to 

the spread of the electrical field outside the catheter. Therefore, the interior of the catheter shaft was 

filled with insulating material as well.

 A transseptal sheath was implemented on the model of the  8.5 F Agilis NxT steerable introducer 

(Abbott, Chicago, IL, USA) as depicted in Fig. 1(e). Detailed measures of the implemented catheter 

and sheath geometries are shown in Fig. 1. The respective catheter was embedded in a 140 mm  140mm 

×140mmboxfilledwitheitherbloodorNaClsolution

 as displayed in Fig. 2(a) for all simulation setups. Geometry  definition and tetra hedral meshing was 

done with Gmsh (version 4.5.6) [16]. Mesh resolution was adapted to the size of local structures being 

the highest at the Intella Nav MiFi OI mini elec trodes and the lowest at the outer boundary of the  box. 

The meshes were comprised of 2.5 million to 5 million tetrahedral elements.

 1) Standardized NaCl Solutions: Either catheter was  placed in the surrounding box filled with NaCl 

solution of eight different molar concentrations starting from 0.02 mol l  0.01 mol l up to 0.09 mol/ l . 

 2) Trans septal Steerable Sheath: Within a surrounding  box filled with blood, either catheter was 

withdrawn into the transseptal sheath model with the distance dSh describing the distance between the 

catheter tip and the distal edge of the sheath (compare Fig. 2(d)). Negative distances describe the 

withdrawal of the catheter into the sheath. dSh was varied from −2mmin steps of 0.5 mm up to 19.5 mm. 

3) Tissue: Either catheter was placed in the surrounding box f illed with blood. A square patch of tissue 
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measuring 110 mm × 110 mm×2.5mmwasplaced below the catheter resembling a piece of atrial 

myocardial tissue of typical wall thickness [17] (compare Fig. 2(a)). The distance dT between the 

catheter and the tissue was varied from −2mmto10mminstepsof0.5mm (compare Fig. 2(b)). Negative 

distances represented an immersion of the catheter into the tissue. Mechanical interaction was not 

modeled. Instead, the catheter simply displaced the tissue. In a second step, the angle αT between the 

catheter and the tissue was varied from 0◦ to 180◦ in steps of 15◦. For 90◦ < αT ≤180◦, one of the mini 

electrodes pointed directly towards the tissue. For 0◦ ≤ αT < 90◦, the two remaining electrodes were 

pointed towards — but not directly towards — the tissue (compare Fig. 2(b)). The pivot was located at 

the intersection of the catheter’s distal plane and the outer wall of the catheter shaft at the left and the 

right, respectively. The experiment was conducted for five different distances between catheter and 

tissue dT ∈{0.0mm,0.5mm,1.0mm,2.0mm,4.0mm}.

 4) Transmural Lesion: The general tissue setup as described above was complemented by a central line 

of scar tissue of width wSc ∈{3mm,6mm}(compareFig.2(a))representing  ablated tissue from a 

previous procedure or natively developed  myocardial scar. For two different distances between 

catheter and tissue (dT =0mm and dT =1mm), either catheter was moved perpendicularly to the line of 

scar starting at a distance to the center of the line of scar of dSc = −10mm, crossing the line of scar for 

dSc =0mm up to a distance of dSc =10mm at a default step size of 1 mm and a decreased step size of 0.5 

mm for |dSc| < 2mm.

 5) Pulmonary Vein: The insertion of either catheter into a  pulmonary vein (PV) was simulated by 

extending the general  tissue setup by a perpendicular tube filled with blood (compare Fig. 2©). For a 

PV wall thickness thPV =2mm, four different inner PV radii rPV ∈{2mm,3mm,4mm,6mm} were 

i m p l e m e n t e d .  F o r  r P V = 6 m m ,  a d d i t i o n a l  P V w a l l  t h i c k n e s s e s  o f  t h P V 

∈{1mm,3mm,4mm}weremodeled.Eithercatheterwas inserted into the PV quantified by the distanced 

T to the surface of the tissue. Negative distances represent states with the respective catheter being 

inside the PV while positive distances represent states of catheter elevation above the tissue. dT was 

varied from −20mm(full immersion) to 10 mm (full extraction) in steps of 1 mm.

6) Irrigation: Catheter irrigation was modeled by placing a sphere of physiological NaCl solution at 

each center of the irrigation holes displacing all encircled blood elements(compare Fig. 2(e)). The 

radius rNaCl of the NaCl spheres was varied from 0 mmto2mminsteps of 0.05 mm.

 B. In Silico — Material Properties

 The tetrahedral elements of the geometrical meshes were  assigned conductivity values characteristic 

for the respective material at 14.5 kHz as summarized in Table I.Due to the significant dependency of 

conductivities on the temperature, the latter had to be regarded for. The in vitro setups with NaCl 

solutions of different concentrations were conducted at different temperatures and compared to in 
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silico experiments based on conductivities published by Gabriel et al. [1], which lack an explicit 

statement about temperature. Comparing to the conductivity of 0.5 % NaCl solution  given for 20 ◦C 

[18] suggests that Gabriel et al. measured at

a slightly higher temperature TGab (compare Table I). With a  temperature coefficient of 

approximately 2.1% ◦ [19] and the reference values from [18], Gabriel et al. most likely measured NaCl 

solutions significantly below body temperature as opposed to their measurements of biological tissue. 

Since the data set [1] was consistent in itself, the exact temperature was deemed insignificant for the 

validation setups with NaCl solutions of different concentrations.

All other in silico experiments were parameterized with conductivities given for blood, myocardial 

tissue, and scar tissue at body temperature (BT) as well as physiological 0.9 % NaCl solution for 

catheter irrigation at an approximate lab temperature of 20 ◦C as listed in Table I. Due to the lack of an 

explicit reference for the conductivity of physiological 0.9 % NaCl solution, the latter was linearly inter 

polated from the conductivities of 0.5 % and 1 % NaCl solution at 20 ◦C [18] as listed in Table I.

C. In Silico — Impedance Forward Simulation

 The spread of the electrical field was simulated with the  software EIDORSv3.10[23] and MATLAB 

R2021 a (The Math Works, Inc., Natick, MA, USA). In short, EIDORS solves the Poisson equation 

with a finite element model F. The injection currents are given as boundary conditions. The current 

density and the potential field are the solution. The voltage v between two electrodes is extracted as the 

potential difference and is dependent on the given conductivities σ at the elements of the model and the 

stimulation pattern q of the electrode model with v =F(σ,q)[23].

 Stimulation and measurement circuits were defined according to the clinical system: A four-terminal 
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circuit with current  injection between the distal tip electrode and the proximal ring electrode was 

combined with measurements between the  mini electrodes and the distal ring electrode for the Intella 

Nav MiFi OI [7]. The three voltage measurements resulting  from either mini electrode to the distal ring 

electrode were reduced to their maximum value following the clinical system. The Intella Nav Stable 

point was set up as a three-terminal circuit with current injection between the distal tip electrode and the 

proximal ring electrode and voltage measurement between the distal tip electrode and the distal ring 

electrode. 

An alternating current of 5μA peak-to-peak amplitude at 14.5 kHz was modeled. The complete 

electrode model was used [24]. The resulting voltage amplitude |v| was then divided by the amplitude of 

the injected current to obtain LI as the magnitude of the impedance.

D. In Vitro Setup

 All measurements were conducted with the Rhythmia Hdx  system (Boston Scientific, Malborough, 

MA, USA), the IntellaNav MiFi OI, and the IntellaNav Stablepoint. To validate the simulation 

framework, NaCl solutions of different concentrations and known conductivity σ were prepared. The 

molar mass as given in [1] starting from 0.02 mol l up to 0.09 mol l in steps of 0.01 mol

 l was converted to weight percentages. The respective amount of NaCl was weighed out with a scale of 

10−3 g resolution and 10−3 g precision and dissolved in 250 ml of de-ionized water. For all 

concentrations, the NaCld is solved completely and form edanaqueous solution. Athermo meter of 

0.1◦Cresolution was used to keep track of the solution’s temperature. The LI was measured with both 

catheters in each solution at 7 to 13 different temperatures between 18.2 ◦C and 38.8 ◦C. For 

comparability, the LI at three different temperatures — namely 21 ◦C, 25 ◦C, and 36 ◦C — was 

interpolated and compared to the simulated results for the respective NaCl solutions.

Additionally, the behavior of LI with tissue contact was measured in vitro. A tissue phantom composed 

of 100 ml de-ionized water, 3 g agar-agar, and 0.0499 g NaCl [25] was prepared. The expected 

conductivity of 0.16 S m at 25 ◦C matched the conductivity of cardiac tissue at 14.5 kHz well. Since in 

vitro measurements were taken at 20.5 ◦C in this work, the actual conductivity might have deviated 

slightly due to the difference in temperature. Typical temperature coefficients reported for similar 

materials justified to neglect deviations caused by the described change in temperature [19], [26]. 

Additionally, a piece of smooth left atrial porcine tissue was used. The tissue phantom and the tissue 

sample were mounted at an elevated ring in order not to disturb measurements by the mount in 0.35 % 

NaCl solution. Either catheter was positioned at the tissue phantom and the tissue sample in orthogonal 

and parallel orientation.

 The effect of catheter irrigation with physiological NaCl  solution on LI was investigated by increasing 

the flow rate of the HAT500irrigation pump (Osypka AG, Rheinfelden, Germany) from 0 ml min to 2 
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ml  min and 17 ml min in a 250 ml bath of 0.35 % NaCl solution. A flow rate of 2 ml min is clinically 

applied in standby mode while the flow rate is typically adjusted to 17 ml ablation. The bath model did 

not include circulation.

 E. In Human Setup

 Clinical measurements complemented the in silico analysis  of catheter sheath interaction and its effect 

on the LI. Either catheter was located in the left atrium passing the inter-atrial septum via the transseptal 

sheath, namely the Agilis NxT steerable introducer. An X-ray scan verified that the proximal ring 

electrode was outside of the sheath. Starting from a central position in the left atrial bloodpool without 

endocardial contact, the catheter was gradually pulled back into the she a that constant speed while 

recording the LI. Clinical LI was represented by its moving average calculated with a sliding window 

of 1.5 s width as provided by the electroanatomical mapping system. All in human measurements were 

approved by the local ethics committee and were conducted in accordance with the Declaration of 

Helsinki. Written informed consent was obtained from all patients.

 III. RESULTS

 A. Aqueous NaCl Solutions

 Fig. 3 presents LI values measured in vitro in aqueous NaCl  solutions prepared according to Table I at 

21 ◦C, 25 ◦C, and 36 ◦C along with simulated LI values for in silico setups of the corresponding molar 

concentrations. Higher temperatures yielded lower LI values for constant NaCl concentration. In vitro 

and in silico experiments followed the same hyperbolic-like trend with decreasing LI values for 

increasing conductivity. Simulated LI values predominantly fell between the corresponding in vitro 

measurements at 21 ◦C and 25 ◦C for both catheters with a median deviation of −2.7 Ω and −2.8 Ω from 
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the measurements at 21 ◦C for the IntellaNav MiFi OI and the IntellaNav Stablepoint, respectively. A 

negative deviation is in  line with the assumption of 20 ◦C <Tgab 36 ◦C as stated in

Section II-D. With the in silico and in vitro traces matching both  in morphology and absolute values, 

the simulation environment was considered valid to a high degree of detail across the relevant range of 

conductivities for further experiments. NaCl concentrations of  NaCl =0.06 mol l and NaCl =0.07 mol l 

equaling mass concentrations of 0.35 % and 0.41 % were found to yield an LI comparable to human 

blood .For a concentration of NaCl =0.06 mol l ,thein silico setups yielded an LI of 98.3 Ω and 154.5 Ω 

compared to in vitro measurements at 21 ◦C of 101.9 Ω and 156.2 Ω for the IntellaNav MiFi OI and 

IntellaNav Stablepoint, respectively, which compared well to the clinically observed ranges of 

bloodpool LI. The simulated bloodpool LI for a blood conductivity σ = 0.7 S m [22] as given in Table I 

and later on used in all other in silico setups was at the lower bound of clinically observed values with 

87.1 Ω for the IntellaNav MiFi OI and 138.9 Ω for the IntellaNav Stablepoint. Linear regression of LI 

measurements with both catheters deduced a perfect linear relationship (R2 < 10−4) between LI values 

measured with the IntellaNav MiFi OI (LIMiFi) and the IntellaNav Stable point (LIStPt)forin silico 

and in vitro experiments. Measurements inanextendedsetof25NaClsolutionsof concentrations 

between0.15%and2.00%yielded the following linear relationship:

B. Transseptal Steerable Sheath

 Fig. 4 presents simulated and exemplary clinical LI traces  characteristic for the withdrawal of the 

IntellaNav MiFi OI (a) and the IntellaNav Stablepoint (b) into the transseptal sheath. Starting at a 

simulated bloodpool of 87 Ω and 139 Ω, the in silico LI measured with the IntellaNav MiFi OI and the 

IntellaNav Stablepoint first increased by more than 2 Ω for the distal edge of the sheath being located 
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between the proximal and the 2nd to proximal ring electrode. The steep

 increase of LI began upon the coverage of the distal ring  electrode by the sheath. For full sheath 

coverage, the LI increased up to 1353 Ω and 2200 Ω for the IntellaNav MiFi OI and the IntellaNav 

Stablepoint, respectively. For the distal edge of the sheath being located between the distal ring 

electrode and the tip electrode, an interim decrease in steepness formed a plateau especially 

pronounced for the IntellaNav Stablepoint. 

Both simulated traces compared well with the clinically measured traces.

 C. Catheter Tissue Interaction

 1) Catheter Distance and Orientation: Again starting  from a bloodpool LI of 87 Ω and 139 Ω for the 

IntellaNav MiFi OI and the IntellaNav Stablepoint, respectively, the LI increased with decreasing 

distance to the tissue surface for perpendicular catheter positions (αT =90◦) as shown in Fig. 5. At a 

distance dT =3.5mm and dT =2.5mm, the LI exceeded the bloodpool LI by more than 2 % for the 

IntellaNav MiFi OI and IntellaNav Stablepoint, respectively. At a distancedT 

=0mm,theLIexceededthebloodpoolLIby16.0% and 14.9 % for the IntellaNav MiFi OI and IntellaNav 

Stablepoint, respectively. The closer the catheter approached the tissue, the steeper the LI increased. 

For negative distances dT, i.e. the catheter entering the tissue, the increase in LI per distance was 

approximately constant. For the IntellaNav MiFi OI, a small plateau in LI formed between dT = 

−1.0mm and dT = −1.5mm. 

Fig. 6 presents the simulated LI values for changing angles αT between the catheter and the tissue for 

selected distances. For both catheters and all distances, the traces were w-shaped. Starting from a 

perpendicular position and approaching a parallel position, LI first dropped and then increased 

again.TheLIfor parallel catheter orientation at a distance dT =0mm exceeded the LI for perpendicular 
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catheter positions by 14.0 Ω (αT =0◦) and12.9Ω(αT = 180◦)fortheIntellaNavMiFiOIandby9.4Ω

 for the IntellaNav Stablepoint. While the traces were symmetric  to αT =90◦ for the IntellaNav 

Stablepoint, the LI depended on the orientation of the mini electrodes for the IntellaNav MiFi OI as 

indicated by the mirroredtrace in Fig. 6. Catheter orientations with one of the measuring mini 

electrodes being directed to the tissue ((90◦ <αT ≤ 180◦)) exceeded those LI values of the same distance 

and angle for which none of the mini electrodes pointed directly towards the tissue (0◦ ≤ αT < 90◦).

 In vitro measurements with the respective catheter touching  a tissue phantom or a tissue sample 

perpendicularly and in parallel yielded comparable differences between the paralle land orthogonal 

position. The LI for the parallel position exceeded the LI of the perpendicular position by 

approximately 11 Ω and 10 Ω for the IntellaNav MiFi OI and IntellaNav Stablepoint, respectively. 

2) Transmural Lesion: Due to the higher conductivity of connective tissue compared to healthy 

myocardium, the LI typically drops in the vicinity of myocardial lesions. In these setups, the 

dependency of the LI onthe extent of the scar and the relative position of the catheter was investigated. 

Fig. 7 shows LI 
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 traces for the virtual catheter passing linear lesions of 3 mm and  6mmwidth.Fordirecttissue contact 

(dT = 0mm),theabsolute drop was larger for the IntellaNav Stablepoint due to the higher baseline LI for 

either lesion width .The percentage drop base don the LI at maximum distance to the lesion, however, 

was similar with3.8%and6.0% for lesion width so f3 mmand 6mm for the IntellaNav MiFi OI and a 

percentage drop of 3.9 % and 5.7 % for the IntellaNav Stablepoint. Increasing the vertical distance dT 

between the catheter and the myocardial tissue by 1 mm caused a larger drop in the baseline LI than 

either of the scars for both catheters.  

Fig. 8 shows the potential field (a) and the current density (b) for the setup with a scar width wSc = 3mm 

and direct tissue contact. With a similarity to an electrical dipole field, the current spreads between the 

injecting electrodes. The current density in
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 Fig. 8(b) adumbrates the edges of the tissue directly underneath the distal tip electrode. Higher current 

densities in the central  line of scar compared to the surrounding tissue were caused by the higher 

conductivity of scar tissue.

D. Insertion Into a Pulmonary Vein

 Fig. 9 shows characteristic LI traces for progressive introduction of an ablation catheter into the PV. 

Fig. 9(a) displays simulated LI values for the IntellaNav MiFi OI . The LI increased from 87Ωinthe 

simulated blood pool up to peak values between 93Ω and 176 Ω depending on the radius rPV and the 

thickness thPV of the PV.According LI traces for the IntellaNav Stablepoint are presented in Fig. 9(b). 

Starting from a simulated bloodpool LI of 139 Ω, the LI increased up to 145 Ω to 240 Ω depending on 

rPV and thPV.

 The radius rPV was found to be a strong determinant of the  maximum LI reached upon insertion of the 

catheter into the PV. While the narrowest simulated PV with rPV =2mm yielded a maximum LI of 176 

Ω with the IntellaNav MiFi OI and 240 Ω with the IntellaNav Stablepoint, an increase of the radius by 1 

mm resulted in a maximum LI of only 127 Ω and 186 Ω, respectively.

 Peak values for all parameterizations of the PV corresponded  with the insertion of the tip of the 

ablation catheter into the PV in the in silico experiments. The slight decrease for deeper insertions was 

related to the passing of the surrounding tissue plate that additionally elevated the LI at its maximum. 

The thickness of the vein tissue took additional influence on the absolute LI value, as shown for a vein 
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radius rPV =6mm in  Fig. 9.

E. NaCl Solution Irrigation

 Fig. 10 displays simulated LI values for flushing of the  catheters with physiological NaCl solution 

exiting the cooling lumen at the irrigation holes. Varying the bubble radius rNaCl from 0 to 2 mm 

mimicked changing the irrigation flow rate. The LI remained indifferent to NaCl bubbles up to a radius 

rNaCl =0.7mmandrNaCl =0.55mmwithlessthan1%change compared to the in silico measurement in 

plain bloodpool of 87Ω and 139Ω for the IntellaNav MiFi OI and the the IntellaNav Stablepoint, 

respectively. For the IntellaNav MiFi OI, the LI then slightly increased reaching a maximum elevation 

of 1.4 Ω above the bloodpool for rNaCl =0.8 mm when the NaCl bubbles barely reached the mini 

electrodes’ distal edges. Afterwards, LI values decreased with increasing rNaCl down to 76.4 Ω for 

rNaCl =2mm. The LI decreased monotonously for the IntellaNav Stablepoint down to 116.6Ω  rNaCl 

=2mm.

 Fig. 10(a) and (b) display in vitro traces of LI for onset and  offset of irrigation at different flow rates. In 

vitro measurements at a flow rate of 2 ml min revealed an instantaneous drop of 0.6 Ω  and 1 Ω and 

oscillations in LI of 0.6 Ω and 1 Ω peak-to-peak amplitude tracing back to the cylinders of the irrigation 

wheel compressing the irrigation tube for the IntellaNav MiFi OI and the IntellaNav Stablepoint, 

respectively. For the IntellaNav Stablepoint, LI dropped abruptly by 2.5 Ω upon the onset of irrigation 

at 17 ml min. The gradual decrease of LI is the result of a small bath volume mixing with the irrigation 

fluid of higher conductivity
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 IV. DISCUSSION

 In summary, we presented an in silico  environment that resembled in human and invitroLI 

measurements to a high degree of detail and allowed for quantification of distinct influences on the 

measurement with known ground truth.

 A. Aqueous NaCl Solutions

 Model validation with standardized aqueous NaCl solutions  of knownconductivity was successful 

and proved the suitability of the simulation environment. NaCl solutions can be assumed to be of 

mostly resistive character at a measurement frequency of 14.5 kHz. Thus, the hyperbolic-like 

relationship between conductivity and LI can be explained as impedance reduces to resistance in this 

setup and resistance is reciprocally related to  conductivity.

 For in vitro experiments, aqueous NaCl solutions at 0.35 % to 0.4 % mass concentration at 21 ◦C were 

shown to serve well as dielectric equivalent of human blood at body temperature for a measurement 

frequency of 14.5 kHz. 

A perfectly linear relationship between LI measurements with the IntellaNav MiFi OI and the 

IntellaNav Stablepoint as described by equation (1) is of great clinical value. Translation of findings 

and reference values between both catheters can extrapolate clinical trials to the respective other device 

and reduce efforts. Measurements with different instances of the catheters resulted in minor deviations 

of the linear coefficients and could potentially be caused by slight manufacturing differences or by the 

fact that all in vitro catheters had been used for radio frequency ablation before.

 B. Transseptal Steerable Sheath

 In silico experiments revealed that LI started to increase no tably as soon as the sheath passed the 

proximal ring electrode. LI measurements for both, substrate and lesion characterization in clinical 

practice, should therefore always assure full withdrawal of the catheter out of the sheath in order to 

prevent confounding influences on the measured LI.

 C. Catheter Tissue Interaction

 The elevation of LI in tissue contact above the bloodpool  LI ranged from 14Ω for 0 mm distance to the 

tissue, i.e. 0 g so-called “contact force,” to 33 Ω for −2 mm distance to the tissue and compared well to 

clinically observed mean ranges between 16Ω and 20Ω [27] for the IntellaNav MiFi OI. The simulated 

upper bound for an immersion depth of 2 mm thus likely overestimates the LI for clinical mean contact 

force applications due to the disregard of realistic tissue deformation. Sulkin et al. had performed 

detailed in vitro experiments on catheter tissue interaction with the IntellaNav MiFi OI and found a 

nonlinear monotonic increase of LI as the catheter approximated the tissue at an angle of 90◦ [7]. The in 
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silico results generated in this work matched the shape of the curve very well but yielded scaled 

absolute values and slopes presumably due to  differences in the underlying conductivity of tissue and 

blood. The right ventricular tissue used by Sulkin et al. was presumably thicker than the atrial tissue 

modeled with a thickness of only 2.5 mm in this work and could explain the higher absolute values and 

slopes in their study. Additionally, the natural variability of the conductivity of tissue samples causes a 

spread of measured LIs [7] that could account for the scaled results. The specific conductivities chosen 

in this work are only one sample of the natural spread of human myocardial conductivity.

 Changing the angle between catheter and tissue resulted in  higher LIs for more parallel compared to 

orthogonal catheter orientation for distances dT > −2mmbothintheworkbySulkin et al. and the in silico 

experiments in this work. Garrott et al. [8] observed a mean LI difference of 13 Ω between 

perpendicular and parallel catheter orientation of the IntellaNav StPt which is well in line with the in 

silico experiments  here.

 In silico experiments with the IntellaNav MiFi OI presented  a small plateau for an immersion into 

atrial tissue by 1.0 mm to 1.5 mm as well as an abrupt decrease in LI for an angle αT =180◦ that were not 

in line with the trend of the respective adjacent distances and angles. Presumably, the  between the 

measuring mini electrode and the tissue caused both  observations.

 Clinical studies report different ranges of LI values for  healthy and scar tissue, e.g. 109Ω ± 15Ω and 

104Ω ±12Ω [10], 111Ω ±14Ω and 92Ω±16Ω [11], and 132Ω±12Ω [12], respectively, for the IntellaNav 

MiFi OI. The variability in range may be explained by different operators and differences in typically 

applied contact force which remains uncontrolled for the IntellaNav MiFi OI. In line with previously 

published clinical observations, scar tissue presented lower LI compared to healthy myocardium 

duetotheincrease in extracellular space and the resulting increase in conductivity in the in silico model 

as well. Slightly lower values for both healthy and scar tissue in the in silico study as depicted in Fig. 7 

in comparison with the clinical observations [10]–[12] could either be caused by  the choice of 

conductivies in the in silico model or from a lower contact force. While the in silico model operates at 

an equivalent of 0 g so-called “contact force” for the experiments on scar tissue, typical clinical values 

range from 5 g to 20 g. The larger the lesion area within the footprint of the catheter, the lower the LI 

dropped. The results presented in Fig. 7 emphasize the importance of direct tissue contact and 

controlled contact force for quantitative applications of LI measurements. Drops in baseline LI caused 

by only 1 mm distance to the endocardial surface exceeded LI drops caused by transmural lesions. 

Since the exact values depend on the scar and tissue conductivity provided to the model and scar 

conductivity was approximated by the conductivity of connective tissue, a validation of the 

conductivity of atrial scar tissue would strengthen the finding but was out of the scope of this work.

Myocardial tissue was modeled as homogeneous, isotropic  block. The effect of fiber direction and 

three-dimensional atrial  structures remains unlit within the scope of this work. Future studies will have 
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to shed light on more detailed models of the myocardium.

 D. Insertion Into a Pulmonary Vein

 In silico experiments demonstrated the strong dependency of  the LI measured inside a PV on the 

radius of the vein. Vein tissue was modeled indifferently from myocardial tissue for simplicity although 

the substrates clearly differ histologically and can be assumed to further alter the LI measured in human 

Pvs.

 E. NaCl Solution Irrigation

 Both IntellaNav MiFi OI and IntellaNav Stablepoint come with an open irrigated tip with the purpose 

of cooling the electrode during ablation delivery. Typically, catheters are flushed with 0.9 % so-called 

physiological NaCl solution at lab temperature. However, 0.9 % NaCl solution deviates by a factor of 

approximately 2 from human blood in terms of conductivity (compare Table I). Earlier studies have 

shown that the irrigation fluid during radio frequency ablation delivery takes influence on lesion 

formation. Highly conductive irrigation fluids such as physiological NaCl solution attract current flow 

and thus reduce the current flowing through the target tissue resulting in reduced energy deposition and 

smaller lesions compared to irrigation with less conductive fluids such as 0.45 % NaCl solution or 

dextrose water [28]–[31]. Similarly, awareness should be drawn to irrigation fluids for LI 

measurements during ablation delivery and substrate characterization. In particular, two cases have to 

be distinguished: the effect of constant irrigation flow rates >0 ml /min and the effect of changing flow 

rates .Constant flow rates mainly relate to the application of LI substrate mapping while a change of 

flow rate alludes to the use case of radio frequency ablation delivery. In either case, clinical LI is mostly 

interpreted in differential manner comparing to the bloodpool reference or  the LI at the start of the 

ablation as opposed to absolute values. With the typical increase of the irrigation flow rate from a 

default flow of 2 ml min to 17 ml min or 30 ml min during radio frequency power delivery, the amount 

of irrigation fluid surrounding the catheter tip presumably increases and causes an LI drop by default 

that is not related to tissue heating as commonly attributed to LI drops during ablation. 

With the results presented in Fig. 10 and the assumption that the irrigation fluid is quickly flushed by 

circulatory blood flow, the LI drop caused by changes of the irrigation flow rate seem to be mostly 

negligible seen in the context of typically required minimum LI drops of 12 Ω to 16 Ω during radio 

frequency power delivery with the IntellaNav MiFi OI [9]. For the use case of LI substrate mapping, LI 

differences of few ohms become of importance. However , a constantly low flow rate of 2 ml /min 

limits the potential for flawing the measurement. Interpreting LI only in differential manner, irrigation 

will impact the result if the distribution of NaCl close to the catheter tip changes, e.g. due to blood flow. 
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Additionally, the higher conductivity of NaCl solution compared to tissue and blood  less current to 

flow through the target of interest. The in silico investigations in this work are clearly limited to the 

oversimplified spherical geometries of NaCl irrigation f luid at the catheter tip as well as the lack of a 

clear correlation betweensphericalradiusinthemodelandclinicalirrigationflow rates. Similarly, the in 

vitro setup lacks a model of circulatory blood flow. Including a fluid dynamics model could bring more 

detailed insights into the influence of irrigation and irrigation changes on the measured LI.

F. Sensitivity

 Slight variations in the catheter dimensions resulted in not able  changes of LI especially for the 

respective measuring electrodes.

For quantitative analyses, a detailed geometrical model of the  catheter under investigation is therefore 

of high importance.  

In silico experiments in this work demonstrated that selected phenomena of interest such as the 

presence of scar tissue result in minute changes in LI while recording conditions such as the loss of 

optimal wall contact cause changes in the same or even higher  order of magnitude .In a clinical 

environment under the presence of measurement noise ,the detectable range of changes in LI will 

further decrease, which emphasizes the necessity of establishing ideal wall contact, amongst other 

recording conditions under control of the operator.

    In clinical setups, the inflation and deflation of the lungs is  an additional confounding factor with 

evident impact on the LI measurement [27] due to the close proximity of the lungs to selected parts of 

the cardiac chambers. While the conductivity of inflated lungs is reported to be 0.0954 S m at 14.5 kHz, 

the conductivityincreasesto0.247 S m indeflatedstate[21].Sincethe respiratory state of the patient is a 

known parameter, respiratory oscillations in LI traces could be compensated for.

    An estimate of the relative contribution of sample volumes  in vicinity to the catheter to the measured 

LI would be of high interest in order to assess the suitability of catheters and electrode arrangements for 

impedance measurements. The close proximity of the catheter will take significantly more influence on 

the measured impedance for LI measurements as compared to generator impedance measurements. 

Specific examples such as varying the distance between catheter and tissue, scar, and sheath as well as 

varying the volume of NaCl irrigation fluid were presented in this work. However, a systematic 

analysis does not only require the variation of the sample volume position but also of its size and 

conductivity. Future studies should systematically shed light on this aspect in order to further optimize 

catheter  electrode arrangement for LI measurements.

 V. CONCLUSION
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 With this work,we introduced and validated an in silico model  including highly detailed catheter and 

sheath geometries in combination with a simplified myocardial geometry to study local electrical 

impedance measurements with intra-atrial catheters. Clinically relevant scenarios such as catheter-

tissue interaction in terms of angle, distance, and substrate, the insertion of the  catheter into a PV, the 

withdrawal into the trans septal sheath, and catheter irrigation were reflected in the model. Forward 

simulations of the electrical field gave in sights in the quantitative effects of isolated and combined 

changes in parameters on the LI. The presented environment proved to be a highly valuable tool that 

provides deeper in sight in to the clinical inter pretation of LI and has the potential to support future 

catheter development.
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A B S T R A C T
Surgical simulators are safe and evolving educational tools for developing surgical skills. In  

virtual and hybrid simulators are preferred due to their detailedness, customization and 

evaluation capabilities. To accelerate the revolution of a novel class of hybrid simulators, a 

Smart Artificial Soft Tissue is presented here, that determines the relative position of conductive 

surgical instruments in artificial soft tissue by inverse resistance mappings without the need for 

a fixed reference point. This is particularly beneficial for highly deformable structures when 

specific target regions need to be reached or avoided. The carbon-black-silicone composite used 

can be shaped almost arbitrarily and its elasticity can be tuned by modifying the silicone base 

material. Thus, objective positional feedback for haptically correct artificial soft tissue can  

ensured. This is demonstrated by the development of a  laryngeal phantom to simulate the 

implantation of laryngeal  pacemaker electrodes. Apart from the position-detecting larynx 

phantom, the simulator uses a tablet computer for the virtual representation of the vocal folds’ 

movements, in accordance with the electrical stimulation by the inserted electrodes. The 

possibility of displaying additional information about target regions and anatomy is intended to 

optimize the learning progress and illustrates the extensibility of hybrid surgical simulators.

Index Terms—Artificial tissue, hybrid medical simulation, laryngeal pacemaker, electrode 

positioning, haptical realistic, soft sensor, position detection.

 I. INTRODUCTION

 SURGICAL simulation has proven to be an essential train ing method to significantly improve skills, 

especially of  young physicians, or when practicing innovative new surgical approaches without risk to 

patients [1], [2]. As a result of constantly advancing research, various types of simulators have been 

developed that can simulate increasingly complex processes [3]. A rough distinction can be made 

between four categories: simulation using animal trials, experiments on human cadavers, simulations 

with synthetic replicas of anatomies, and electronically enhanced or visual replicas [4]. The latter 

category also includes virtual reality (VR)-based simulators and hybrid simulators that combine 

different technologies to optimize training. Many new simulators belong to the latter  group [1], [5], 
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[6], [7], [8], [9].

Despite all advantages of purely visual simulators, haptic components often remain indispensable [5]. 

In particular, instrument handling and the haptic perception of different tissue layers during cutting or 

penetration represents a critical core competence. The aim of a hybrid simulator is therefore to 

seamlessly combine animations and evaluations of virtual simulators [6], [10] including their level of 

detail, with realistic haptic components of passive simulators [11], [12], [13]. Also, the chance of using 

real surgical instruments with all their capabilities should be taken. Such a combination of different 

systems can deliver good results in terms of learning success, as already shown in first publications [7], 

[8], [14], [15]. 

Typically optical or electromagnetic systems are used for instrument tracking. In optical tracking 

systems, visual markers are placed on the instruments and the patient phantom.

 Their positions are captured by cameras and the position and  orientation of the instrument relative to 

the camera system is determined [16], [17]. This position data can be embedded in virtual animations. 

Especially when interacting with artificial soft tissue, representing muscles or connective tissue, 

optical systems fail to provide accurate results, since in most cases the markers cannot be placed 

directly on or inside the deformable phantom parts. Electromagnetic tracking systems, on the other 

hand, obtain the position and orientation of small target coils within a generated magnetic field [18], 

where these small coils can be directly applied to the deformable artificial tissue. However, the coils are 

expensive, alter the haptics of soft tissue and require a cable connection between each coil and the 

tracking system, which limits their usage in hybrid simulators. In addition, this technique brings 

limitations to the use of metals in the detection area, as they affect the electromagnetic field and thus the 

tracking accuracy.

 This work describes a cost-effective alternative to complex  tracking systems, the development of 

“Smart Artificial Soft  Tissue,” tissue-mimicking patient phantom parts which provide realistic haptic 

feedback and integrated sensing capabilities. The objective is to develop an intelligent artificial human 

larynx that focuses on the cricoid region and posterior cricoarytenoid muscles to provide a realistic 

training environment for the most critical part during the implantation of a laryngeal  pacemaker (LP) 

system (MED-EL Elektromedizinische Geräte Gesellschaft m.b.H., Innsbruck, Austria).
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Apart from preclinical evaluation of the LPsystem[19],functional testing is also usually performed on 

animals to evaluate the evoked responses to electrical stimulation. Not only ethical concerns might 

arise from animal testing but also high costs might be associated. Considering the 3R principle for 

replacement, refinement and reduction in preclinical testing, using a simulator for training purposes is 

even more preferable. 

Such a surgical simulator needs to meet specific requirements to be a real alternative. Haptic perception 

when advancing an LP Insertion Tool (LPIT) through different soft tissue layers such as skin, mucosa, 

cartilage and muscle tissue is a key skill to learn (Fig. 1). The correct positioning of the electrode into 

the posterior cricoarytenoid (PCA) muscle ultimately determines whether the vocal fold can be opened 

correctly by neuromuscular stimulation. For this purpose, it is essential to determine instrument 

position on deformable phantom parts. The hybrid simulator to be presented aims to include an 

artificial larynx  with different, haptically realistic tissue layers and an artificial  PCA muscle realized 

as Smart Artificial Soft Tissue. To achieve the key learning objectives, the focus will be on the fusion of 

position recognition and haptic realism in a hybrid environment.

II. MATERIAL AND METHODS

 A. Laryngeal Pacemaker and Electrode Implantation

 The LP System [20] was developed by MED-EL to treat patients with bilateral vocal fold paralysis and 

is based on the concept of selective neurostimulation of terminal abductor branches of the recurrent 

laryngeal nerve (RLN) [21]. The LP-System requires to find a sensitive area, a so-called hotspot, on the 

PCA muscle in order to control the opening of the vocal fold. During implantation ,hot spot 

identification and electrode fixation are the most critical steps and hence are thought to be most 

beneficial to train in a hybrid simulator. To target the hotspot, the LPIT is used to allow a minimally 

invasive electrode placement into the PCA. The LPIT is a bipolar electrode consisting of a trocar and a 

canula. After a small horizontal skin incision over the cricoid, the LPIT is advanced across the upper 

border of the cricoid arch and pushed sub mucosally along the inner surface of the arch towards the 

cricoid lamina. Penetrating the lamina requires advancing the LPIT gradually and gently, applying 

slight rotary movements, until the PCA muscle is reached and a hotspot hopefully found (Fig. 1). For 

verification, electrical stimulation is used under video lary goscopic monitoring of the vocal fold 

movements[20]. If necessary, the LPIT position can be changed by retracting it from the lamina, 

repositioning it, and advancing it again until the hotspot (with the best abduction of the vocal fold) is 

found in the PCA.

B. Haptically Realistic Artificial Tissue
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 1) Tissue Development: The challenge of developing an  artificial larynx with a cricoid cartilage lies in 

the interaction of materials of different hardness and toughness. Therefore, the haptically realistic 

design has only been created for those structures that are actually relevant during surgical simulation or 

need to be penetrated by the LPIT. Here, these are the outer skin, the cartilage itself and the tissue 

directly surrounding it.

 The development of the artificial cricoid was based on expert  opinions and material tests. First, the 

outer shell of the cricoid cartilage was 3D printed using Ultimaker TPU95 A (Ultimaker B.V.,Utrecht, 

The Netherlands) filament.The print had a general wall thickness of 1mmanda layer height of 0.1mm 

without any filling. Only the wall thickness on the side facing the injection site was reduced to 0.3mm 

by decreasing the number of 3Dprinted layers. In addition, the same side was covered with athin layer 

(0.2mm)ofsuperglue(LoctiteSuperGlueLiquid,Henkel AG & Co. KGaA, Düsseldorf, Germany) to 

generate a small, sharp first insertion force peak. This empty shell was filled with an urethane rubber 

(PMC780fromSmooth-On,Inc.,Macungie, PA, USA)mixedwithsilicone oil (AP100 fromWacker 

Chemie AG, München, Germany) at a ratio of 30:9 by weight to reduce the friction of the LPIT while 

sliding through the urethane rubber. To ensure a better connection between soft tissue and

 cartilage, polyester wadding was glued to the inner surface of  the cricoid with silicone glue (Sil-Poxy 

from Smooth-On, Inc., Macungie, PA, USA). Similar to other simulators [22], [23], the soft tissue 

around the cartilage was casted with silicone (Ecoflex 0030 from Smooth-On, Inc., Macungie, PA, 

USA) (Fig. 2(b)). 

The skin covering the larynx is made of DRAGON SKIN 20 with embedded POWER MESH (both 

from Smooth-On, Inc., Macungie, PA, USA). This mesh serves to increase the tear resistance of the 

silicone when it is spread, making the skin more durable.

 2) Animal and Human Specimens: In order to evaluate the  haptic requirements of an artificial 

cricoid cartilage, the core of the physical haptic simulator, the forces applied to the LPIT during 

penetration were measured.For this purpose,porcineand human specimens were used as references. 

Ten larynges of 180-day-old pigs (sex unknown) provided by a farmer (Schickmair Florian 
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,Schickmair Ab-Hof-Vermarktung  KG, Gunskirchen, Austria) served as reference structures 

(byproduct of meat processing). The porcine samples were tested in accordance with the Austrian 

Federal Act on Hygiene Requirements for Animal By-products and Materials Not Intended for Human 

Consumption (Tier materia liengesetz–TMG, BGBl. I Nr. 141/2003) at the University of Applied 

Sciences Upper Austria (Linz, Austria). The larynges were prepared and measured with in 24 hour 

safter slaughter (storage<4◦C,packed airtight). For the measurement, the surrounding soft tissue was 

removed and only the cricoid cartilage itself was measured. Due to deviations or damages during 

preparation, only 6 of them were actually measured.The specimens were fixed by casting the cricoid 

anterior arch with urethane casting resin (Smooth-cast 65D, Smooth-On, Inc., Macungie, PA, USA), 

taking care of not staining the areas to be tested due to the heat generated during curing.

 The human larynges were provided by the Anatomy Donation  Program of the University of Hamburg-

Eppendorf, Germany, in accordance with the Human Tissue Act [24]. The sample measurements at the 

Institute for Biomechanics of BGU Murnau were approved by the Ethics Committee of the State of 

Bavaria, Germany. The Declaration of Helsinki has always been respected [25].

 The measurements (n =12) of the human samples (age and  sex unknown) were performed on a total of 

18 human samples, excluding those of obviously damaged or deformed larynges (forensic medicine 

donations). Samples were stored at −37◦C, thawed 24h before preparation, embedded in polyurethane 

(Rencast FC53 A/B, Huntsman Advanced Materials, Basel, Switzerland) immediately after 

preparation (by pouring the cricoid anterior arch) and measured to avoid tissue altering “freeze-thaw” 

cycles [26]. Care was taken not to alter the relevant tissue by the polyurethane resin.

 3) Force Measurement and Testing: Penetration of the  cricoid cartilage occurred at the lamina, 

lateral to the central vertical ridge, in the middle of the depressions and in the direction from posterior to 

anterior (Fig. 2(a)). The angle of penetration was chosen perpendicular to the cartilage surface. This 

approach ensures no additional forces other than those in the insertion direction, also because the LPIT 

is stable enough not to deform. A K-wire with a diameter of 1.6mm was chosen as penetration tool, as it 

corresponds to the geometry of the LPIT used for surgeries. The tool was attached directly to the load 

cell with a needle holder, co-centric to the load cell with identical force axes. The test speed was at 

10mm/min with a preload of 0.1N, and the specimens were positioned in such a waythat the entire 

cartilage was pierced when the measurement was completed. Thus the entire tip of the penetration tool 

was visible on the opposite side. During the measurements of one type of specimen, the penetration tool 

was not changed. The force curve was recorded as a function of the penetration depth into the cartilage. 

All measurements were performed according  to this principle.

 The measurement data of porcine larynges (n =12, two  measurements from each of six samples, one 

on each side of the almost symmetrical larynxes) as well as those of the artificial cricoids (n =6, same 
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fixation as the porcine samples)  were generated with a uniaxial testing machine (Zwick Z005, 

Zwick/Roell GmbH & Co. KG, Ulm, Germany) with a force transducer (Zwick/Roell Xforce HP 200 

N, Zwick/Roell GmbH &Co.KG,Ulm,Germany which meets the criteria of accuracy classes according 

to ISO 7500-1). The measurement of the humanlaryngeal samples was carried out in the same way 

asthe porcine samples except that the testing machine was a Zwick Z010 (Zwick/ZO10,GmbH & Co. 

KG, Ulm,  Germany)

In addition, experts (otorhinolaryngology surgeons collaborating with the MED-EL company) also 

assessed the haptics of the artificial cricoid cartilages.

C. Smart Artificial Soft Tissue

The central element of the simulator is an artificial soft tissue  layer, positioned behind the cricoid 

cartilage instead of the PCA muscle, determining LPIT’s position within it.

 1) Hardware: The basic idea is to achieve electrical conductivity of an artificial soft tissue layer in order 

to use it as resistive sensor mat and detect voltage-carrying tools. Such a soft and elastic layer can be 

realized by incorporating conductive particles like carbon black into silicone [27]. In principle, various 

silicones corresponding to the mechanical requirements  of the tissue to be imitated can be used, but it 

should be noted  that the modulus of elasticity of the composite also increases as the carbon black 

content increases [28]. The more carbon black is added to the silicone, the better the conductivity [29]. 

The base material used here is Ecoflex 35 fast (58wt%, from Smooth-On, Inc., Macungie, PA, USA). In 

addition, isooctane (25wt%, 2,2,4-Trimethylpentan (≥ 99%) from Sigma-Aldrich, Inc., St. Louis, 

USA), Thinner (8.7wt%) and Slo-Jo (0.8wt%) (both from Smooth-On, Inc., Macungie, PA, USA) were 

added. Isooctane and Thinner reduce the viscosity of the liquid silicone , and Slo-Jo prolongs the 

polymerization time to ensure complete mixing before the silicone is cured. Carbon black (7.5wt%, 

XPB545POWDERfromORIONEngineeredCarbonsGmbH, Frankfurt, Germany), low dosed to hardly 

affect the haptics of the silicone, was used as conductive phase. Homogeneous mixing [30] was 

achieved using a speedmixer (DAC 600.2 VAC-PfromSynergy Devices Limited, High Wycombe, 

United Kingdom)andlowpressure(350hPa).ThisresultedinaSpecific Conductance of σ = 10mS·m−1 

for conductive layers (sensor mats).

Various tasks can be covered by such sensor mats. In the  simplest case, only a basic circuit is closed by 

a contact between a sensor mat and an insertion tool to detect when the tool reaches a certain position in 

the artificial tissue. By dividing the sensor mat into several areas, a first approach for localization, 

similar to Esterer et al. [31] can be realized. Therefore, only one electrode per sensor mat is sufficient.

 In a next step, one-dimensional position detection can be  obtained by using the conductive silicone 

composite as a rectangular layer with two elongated electrodes on opposite sides. Insertion tools can be 

used to apply voltage somewhere between the electrodes. This allows the measurement of currents that 
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are inversely proportional to the ratio of the distances between the insertion point and the electrodes. 

Alternatively, by applying  an electrical gradient field via the electrodes, a voltage, corresponding to 

the distances between the electrodes, can be tapped by insertion tools, similar to a potentiometer. This 

approach can also be extended to the two-dimensional case by using two orthogonal layers [32], [33]. 

To achieve a two-dimensional resolution, it is possible to use four punctual measuring electrodes (Pi, I 

=1...4), inserted in the corners of a single ,rectangular sensor mat as shown in Fig.3. This method is used 

in the LP-simulator and is considered in  more detail. In contrast to O’Neill et al. [34], no voltages are 

injected into the electrode pins when determining the position, but a constant voltage UN is injected 

into the sensor mat by a voltage-carrying injection tool (the LPIT)at point PN. This variant closely 

represents real conditions, in which the muscles are stimulated by electrical currents from the LPIT. 

The distribution of partial currents on electrode pins are measured by voltages Ui on shunt resistors RS. 

Additionally, contact resistances  Rci between sensor mat and electrode pins as well as LPIT RCN must 

be taken into account. By these measurements, resistances Ri, which depend on the distances ri 

between LPIT tip and electrode pins can be utilized for position determination.

 2) Framework for Position Detection: Four resistance  mappings Ri(pN) are assumed for the 

resistances between LPIT

tip and the electrode pins Pi depending on LPIT tip position  pN =(x,y),withthecoordinate origin in the 

sensor mat center (Fig. 3). These mappings can be obtained either from resistivity  measurements, from 

finite element simulations, or from simplif ied model considerations. From them, the LPIT x-

coordinate can be estimated by a general position reconstruction field

to be defined, which depends on all Ri(pN), where its com ponents must be strictly monotonic with 

respect to the x- and y-coordinate respectively. The LPIT tip position can then be  reconstructed from φ 
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by inversion pN = f−1(φ(R1,...,R4))  or better by approximation of the inverse mappings with suitable 

functions. The freedom to define function φ in (1) can be used to achieve a position reconstruction 

mostly independent from unknown and typically varying contact resistances RCi and RCN 

respectively. Finally the sensor resistances Ri are not measured directly and thus they are estimated by 

pin voltage readings Ui. Contact resistances RCi are obtained from a calibration routine  (chapter II-

C6), which has to be executed before using the sensor system.

3) Finite Element Simulation: In order to gain the resistance mappings Ri(pN) the smart artificial soft 

tissue was simulated with the Finite Element Method. A two-dimensional approach for the unwound 

mat was chosen since the thickness of the mat(s =1.5mm)is small compared to its outer dimensions. 

Moreover, the cylindrical, gold-plated electrodes with smooth surface completely penet rate the 

mat,whichiswhythegeometry to be simulated is constant in the Z-direction. The simulation 

wascarriedoutwithMatlab’sPartialDifferentialEquationToolbox[35]withGauss’slawdescribingelectro

staticsofconductive materials

 the conductivity of the sensor mat and σi the conductivity of  electrode pin Pi. The pin diameter was 

chosen as d =1mmand the rectangular area spanned between the pins as 2L × 2W, Ωdenotes the entire 

sensor domain and n is the normal vector to the boundary ∂Ω. The free border of sensor mat ∂ΩB as well 

as electrodes ∂ΩE were Neumann boundary conditions, where the current density for shunt and contact 

resistance is defined by σiV. The pin conductivity σi was obtained from series connection of RCi and 

RS. On LPIT contact point ∂ΩN a Dirichlet boundary condition defined the injected LPIT voltage UN. 

Fig. 4 shows the field V(x,y) for a rectangular sensor domain.Due to shunt resistors RS,the pote ntialis 
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drawn towards ground at the four electrode pins located at sensor mat corners, while the voltage-

carrying LPIT pulls the electrical potential towards supply voltage. 

4) Position Reconstruction Field: A possible choice for  the reconstruction field φ relies on the 

simplified model assumption that the electrical resistances Ri between LPIT tip PN and electrode pin 

locations (Pi, I =1...4) as illustrated by Fig. 3 are proportional to the corresponding distances ri = 

PNPi.By simple geometrical considerations the normalized coordinates xn =x/Landyn = y/W can be 

obtained from distances ri as follows

 where 2L and 2W are the distances between the electrodes  respectively. Since Ri = ρ/A ri, where ρ 

denotes the specific electrical resistance and A a cross-sectional area assumed to be constant, distances 

in (3)–(4) can be approximated by corresponding resistances. In order to achieve a reconstruction f ield 

which is mainly independent on contact resistances the following strictly monotonic field φ =(φx,φy) is 

proposed
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 Here Δαi = αi −αi,min denotes the range of the position  dependent resistance ratio αi for pin Pi with

The value αi,min is the resistance ratio αi if the LPIT is  placed next to pin Pi, where the position 

dependent resistance Ri will tend to zero. The mean horizontal range Δαhor = mean(Δα1,hor,Δα4,hor) 

considers with Δαi,hor = αi,max − αi,min the horizontal distances of the electrodes. Here, αi,max is 

obtained when the LPIT is placed next to the horizontally adjacent pin of Pi such that the position-

dependent resistance Ri is maximized (for purely horizontal deflection). Consequently Δαver = 

mean(Δα3,ver,Δα4,ver) defines resistance ratio ranges between vertical adjacent pins. All these values 

can be obtained during a calibration procedure prior to the usage of the sensor system as discussed in the 

sequel.

 Fig. 5 shows the contour plot of φx and φy respectively  obtained from simulation of the sensor mat 

with conductivity ratio γ = σi/σ =1.0. Since φx and φy obtained from (5)–(6) are closely related to 

normalized coordinates xn and yn,thereconstruction field components can be utilized to reconstruct the 

LPIT position. Observing the contour lines for φ =(−0.5,0.5) highlighted in Fig. 5, it can be perceived 

that the x− and y−coordinates of their intersection (−0.4,0.4) are the desired LPIT coordinates. If the 

grid defined by the contour lines of reconstruction field defined a regular, orthogonal grid, the 

normalized  LPIT coordinates would bedirectly taken from the field components φx and φy 

respectively. However, due to boundary effects this is only true in a small region around the center of  

the sensor mat. Near to the edges of the sensor the contour  lines are distorted. Therefore for position 

reconstruction the inverse of f provides the desired instrument coordinates. Since there sistance 

mappings for there construction field are available,  its inversion can be approximated by suitable 

functions to obtain the instrument coordinates as

with parameters θ =(ax,...,cy) to be determined by fitting  these functions to data obtained from 

simulation. To account for different sensor mat conductances σ and pin conductances σi numerous 

simulations for different ratios γ = σi/σ in the interval γ ∈ [0.1,2.5] were performed. In case of a 

quadratic sensor domain with L = W the parameters were equal for both reconstruction fields due to 

symmetry reasons, therefore ax = ay, bx = by and cx = cy. For reasons of clarity, the parameter 

estimation was performed for such quadratic sensor domains with different values for L in the interval L 

∈ [30,100]mmwith step size of 5mm.

 For each simulation setup and therefore conductivity ratio γ and L the unknown parameter vector 

θ(γ,L) was determined by a nonlinear least squares method (Levenberg-Marquardt Algorithm, [35]). 
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The model quality for all performed parameter estimations was quantified by q =1− min( ˆ y−y / y ,1) 

where y denotes used reference values and ˆ y the fitted ones. Assuming a given conductivity ratio γ, 

then the latter defined inverse functions were derived by obtaining the parameter vector θ(γ,L) from 

computed parameter vectors by linear inter polation. Thus the position detection method is able to 

adopt to a current system setup, where the sensor mat conductivity, as well as pin contact resistances 

may have been changed since last the application. In turn the instrument position can be obtained by 

solving equation system (8)–(9) for xn and yn respectively, which is practically obtained by computing 

the intersection of both equations. 

5) Voltage Readings: Pin voltages Ui are measured by means of four shunt resistors RS with a 10 b 

analogue digital converter of the micro controller (ATMEGA 32U4, Atmel Corporation, San Jose, 

USA). From the electrical circuit diagram in Fig. 3 one can conclude that ̂  Ri =UN/Ui ·RS. Therefore 

the ratio αi as defined by (7) can be obtained directly from voltage readings as

which becomes completely independent from UN and thus from  LPIT contact resistance RCN. From a 

practical perspective this is critical for success, since the LPIT contact resistance depends on the 

intensity of LPIT contact or penetration as well as on non-conductive particles which may influence the 

conductivity between LPIT tip and sensor mat. These influences would have a strong impact on the 

accuracy of the position reconstruction. 

6) Calibration: Before as imulated surgical procedure using the Smart Artificial Soft Tissue for LPIT 

position tracking can be started, a newly inserted sensor mat has to be calibrated to compensate for any 

deviations of the sensor mat’s conductivity  or changed contact resistances. Since the contact resistance 

between the electrodes and the car bon black-silicone composite depends mainly on the geometry and 

material of the elements and particles in contact [36], a constant and equal contact resistance RCi = RC 

for I =1...4 is assumed. The fact that the sensor matis fixed in the area of the electrode pins by a fastening 

clamp and thus very limited deformations or movements are possible in these areas supports this 

assumption. Further it is assumed that the conductivity σ of the sensor mat remains constant over a 

normal period of usage. 

For calibration the LPIT is placed onto the sensor mat as closely as possible to each of the four electrode 

pins Pi which provides ratios αi,min and αi,max as required by equations (5)(6) where ratio αi is 

obtained from voltage readings according to (10). Hereby several voltage readings are averaged over a 

certain time period in order to obtain more robust results. All other ratios for Δαhor and Δαver can be 

obtained accordingly. 

In addition, it is important that all contact resistances Rci are equal and sufficiently small. This can be 

checked by the micro controller’s general purpose I/O pins. If the LPIT is placed next to a pin it is set to 
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the supply voltage U0 while all others pins are set to ground. Switching the I/O pin connected to the 

LPIT to high impedance in put allos to measure the mat voltage Uniby the LPIT tip. Denoting the mat 

resistance between active pin Pi and all other pins with R||, which is serial to the contact resistance RCi, 

results in

This assumes that R|| ≈ 1/3Rmat and thus the resistance to all  adjacent pins is approximately equal. 

This ratio can be utilized to estimate the size of the contact resistance. If the ratio in (11) is below 0.1, the 

contact of the sensor mat is considered to be sufficient.

 Another characteristic parameter of the sensor mat to be  determined is the conductivity ratio γ, which 

is the ratio of pin conductivity σi to mat conductivity σ. The pin conductivity is related to the series 

connection of contact and shunt resistance. Simulation experiments revealed that this ratio can be 

estimated from

the voltage driven LPIT is placed in its immediate proximity  and Ui denotes the voltage measured at 

the diagonal adjacent pin Pi. Hereby the parameters k and u0 can be obtained by nonlinear least squares 

estimation from simulation experiments for different γ. Since the required voltage readings in (12) can 

be obtained during the calibration procedure, the conductivity ratio is defined for the sensor mat in use. 

Consequently the parameters for inverse functions (8)–(9) can be obtained from linear interpolation 

which in turn allow to compute the LPIT position by the proposed framework.

 7) Verification and Validation: The proposed position reconstruction method was verified by 

simulation experiments
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 The accuracy of the position reconstruction was quantified by  the mean error with respect to desired, 

normalized positions. In order to investigate the results from different parameter studies the sensor mat 

was divided into five regions, one central region and four electrode pin regions as indicated in Fig. 6. 

Especially the central region was important for the application in mind, since the PCA muscle resides in 

this region and thus an accurate LPIT position was important for hotspot detection. Within these 

regions the average of the mean error and its standard deviation were computed. Hence, it was possible 

to investigate the influence of different parameter settings on the accuracy of the reconstruction 

method. Five different cases were examined for this purpose, which will be discussed in more detail in 

the description of Table I (chapter III-B1).

 For validation purposes the proposed position detection  method was implemented on  ATMEGA 

32U4 in C++. A template with 7 ×9 equidistant positions in a range of 32mm ×26mm around the origin 

was printed and placed over the sensor mat inside the opened simulator case. Then the LPIT was placed 

on the predefined positions where the computed LPIT position in turn was transmitted over the serial 

interface to the simulator software and stored for further processing .These measurements were 

repeated on twelve identically manufactured sensor mats. The mean error and the corresponding 

standard deviation were computed for the referenced regions.

 D. Virtual Simulator Components

 The software for the hybrid simulator as shown in Fig. 7  is based on Qt-C++ Framework (Version 

5.12.4) using VTK (Version 8.2.0) for 3D-visualization. The user interface is divided into different 
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areas. On the left, during the initial part  of the insertion phase, a live video stream of an endoscope is 

shown in order to monitor the tunneling of the LPIT under the synthetic mucosa of the laryngeal 

phantom. When penetrating the cricoid surface, one can proceed to a virtual simulation of the end 

oscopically observed vocal folds (1). Depending on the position of the LPIT, different movement 

patterns of the vocal folds are induced by electrical stimulation. When the hotspot is reached by the 

LPIT, the vocal folds move laterally and thus simulate an opening of the glottis. Otherwise the 

simulation shows an adverse reaction e.g. closing of the vocal fold or a mixed reaction of closing and 

opening. Buttons for controlling the electrical stimulation (OFF/1 Hz/2 Hz/3 Hz/Tetanic) are 

positioned underneath (2). Optionally anacoustic signal indicating the stimulation impulses can be 

enabled. Both, endoscope view and control elements for electrical stimulation are typically available 

for the real surgical intervention. The right side of the user interface provides additional information to 

support  teaching and learning. The 3D anatomy view of the larynx (3) can berotated, moved and 

zoomed by the trainee which supports learning anatomy or helps to identify critical anatomic regions. 

The core task, the correct positioning of the LPIT into the PCA muscle, can be facilitated by the view of 

target areas (4). The positions of the LPIT tip in the PCA muscle are indicated by red and blue dots, 

since two electrodes are supported and thus the correct positioning of the instrument tips can be verified 

easily. The target areas or hotspots are colored green while sub-optimal areas are colored orange or red.

E. Physical Simulator Components

 A phantom combining hybrid requirements as well as haptics  and position recognition with their 

component sis shownin Fig.8 (Housing and support structures made of 3D-printed Ultimaker Tough 

PLA from Ultimaker B.V., Utrecht, Netherlands). The
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 physical simulator can be connected to the other simulator  components via the laterally mounted 

connectors (1). A micro USBport connects the micro controller to the computer and the simulator 

software. The LPITs (2) are connected via 1.5mm banana plugs (1). Four connectors allow to connect 

two LPITs consisting of canula (outer part) and trocar (inner part) each. The canula shows a backward 

offset of 3mm and is electrically insulated from the trocar. Thus the canula can be used to detect whether 

the LPIT was inserted too deeply representing apenetration of the esophagus.AUSB-endo scope(3) 

provides a sub-and supra-glottic view into the simulator’s interior. By removing the artificial skin (4), 

the inner structures of the simulator become visible. The base (5) contains the electronic circuits and the 

micro controller. The elements (6), (7) and (8) are not penetrated during simulation. Thus they are made 

of more durable material. In contrast, the cricoid with its adjacent tissue (9), which has to be changed 

regularly, as well as the sensor mat underneath (10) require arealistic haptic perception when inserting 

the LPIT into the artificial anatomy.These wear parts can be replaced by lifting the parts (6) and (7) 

upwards and sliding the artificial trachea

(8)downwards.After reassembly ,the structure sare covered with  synthetic skin (4) and soft tissue 

again.

 III. RESULTS

 A. Tissue Measurements

 The artificial cricoids and the human and porcine specimens  were compared on the basis of four 

characteristics: Maximum force, number of dominant peaks, peak distance and the morphology of the 

measurement curve (Fig. 9). For haptic evaluation, in both the human (Fig. 9(a)) and the porcine 

samples (Fig. 9(b)), one dominant peak between 10 N and 15 N was detected. Thereby the forces in the 

porcine samples (maximum of mean force curve ˜ fmax =14.7N; [range 12.0−18.4 N]) were slightly 
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higher than in the human samples( ̃  fmax =10.9N; [range 7.9−14.4N]),although the force ranges of the 

individual measurements partially overlapped. In addition, a characteristic, small and sharp peak at the 

beginning of the measurement curve (< 1mm)wasnoticedinthehumansamples.Fromthedistance 

between the two peaks or from onset to the dominant peak,  sample thickness of about 5mm can be 

estimated.

With the help of surgical experts, different material compositions were evaluated and the artificial 

cricoid introduced in chapter II-B1 was identified as the most realistic imitation  (Fig. 9©). As with the 

human samples, the artificial cricoid (Fig. 9©) proved the second peak ( ˜ fmax =16.02N; [range 

14.1−17.4N]) to be more dominant than the first. Furthermore, spacing between the two peaks was 

similar to the human samples. Although similarly sharply edged, the first peak of the artif icial was 

somewhat higher than the human one. The maximum force corresponds to those of the biological 

references.

B. Smart Artificial Tissue

 1) Simulation: The parameters for the inverse functions ac cording to (8)–(9) were computed for 16 

different dimensions of the sensor mat with 16 different conductivity ratios γ for
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 each simulation case. The mean value of the model quality q  for all 256 models obtained from 

nonlinear optimization was 97.04 ± 0.46% for f−1 x andf−1 y respectively.

 Generally, the parameters a,b and c for a quadratic sensor  domain with L =20mm depending on the 

conductivity ratio γ are depicted in Fig. 10. The parameter c is directly related to the distortion of the 

grid given by the contour lines of the reconstruction field φ as depicted in Fig. 5.Forc<0 a concave grid 

distortion results from rather high pin contact resistances and for c>0 a convex distortion is obtained for 

lower contact resistances. If parameter c =0, then the distortion of the reconstruction grid is minimized. 

Fig. 11 depicts the contour lines for the parameter field c(γ,L). The contour line where c =0denoted by 

γ0(L) represents an adjusted sensor system, where the distortion of there construction gridis 

minimized. The adjustment can be done by changing the shunt resistances so that the conductivity ratio 

γ  = γ0(L).Parametera is connected to the slope of the reconstruction field around the origin and 

parameter b represents boundary effects along the edges of the sensor domain. Both parameters and the 

diagonal voltage ratio Ui/Uj are shown in Fig. 12(a) for an adjusted sensor system along γ0 for different 

sensor domain dimensions L. The diagonal voltage ratio according to (12) represents the ratio between 

smallest and highest possible pin voltages. The smaller this ratio, the higher the sensitivity of the 

position reconstruction method. 

The conductivity ratio γ, which turned out to be a characteristic parameter, can be estimated by (12) for 

different sizes  L of the sensor domain by means of calibration readings. The  mathematical model was 

fitted to simulation data. The result is depicted in Fig. 12(b) and shows the conductivity ratio depending 

on diagonal voltage ratio for different dimensions L. Hereby a model quality of 99.74% was achieved. 

Concluding, the proposed position reconstruction algorithm is summarized by the following steps: i) 

First perform the calibration routine and obtain the conductivity ratio γ according to Fig. 12(b), then ii) 

from parameter fields a (γ,L),b(γ,L)andc(γ,L)asdepicted in Fig. 11 and 10get the reconstruction field 

parameters, and iii) compute function (8)–(9) from voltage readings according to (10) and obtain the 

normalized instrument coordinates xn and yn respectively.

 This algorithm was performed for different simulation cases,  where the mean and standard deviation 

of the position reconstruction error in different regions of the sensor domain is summarized in Table I. 

The dimension L of the quadratic sensor domainwasL =20mm.Thusa10%errorinnormalized 

coordinates was an absolute error of 0.1L =2mm. For case I, III-V the conductivity ratio was γ =0.15, 

for case II γ =0.3. Case I and II used a nominal contact resistance equal for all pins. Case III had 10% 

contact resistance increase at pin P4, case IV a 10% decrease at pin P1 and case V a 10% decrease at pin 

P2 in combination with a 10% increase at pin P4.For simulation cases I and II, where the pin contact 

resistance was equal for all pins, the accuracy in the central region was below 0.3 ±0.2% in % of 

normalized coordinates. The error in the pin regions was approximately 2.5-fold higher as in the central 

region. Simulation cases III–V showed theeffect of different pin contact resistances. The largest error 
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was observed for case V in region pin 3 with 9.98 ± 2.27% in normalized coordinates. Hereby the pin 

contact resistance was reduced by 10% at pin P2 and at the diagonal adjacent pin P4 the contact 

resistance was increased by 10%.

 2) Validation: To validate the position reconstruction using  measurement data, twelve sensor mats 

were analyzed using a grid with 7 × 9 holes for predefined LPIT positions (Fig. 13). Based on these 

measurements, the mean errors and corresponding standard deviations in % of normalized coordinates 

(or in absolute values) were 7.04 ± 3.28% (1.23 ± 0.59mm) for the central region, 9.52 ± 5.33%(1.59 ± 

0.85mm)forpin1region,

C. Final Setup

 The complete setup with two different versions of the simulator can be seen in Fig. 14. Either the 

simplified, more mobile version can be used (1), or the more advanced version (2), which is 

additionally equipped with electromagnetic tracking (3) (NDI Aurora, Planar 20-20 V2 from NDI 

Europe GmbH, Radolfzell, Germany) of the LPITs. The movements of the LPIT induced by the 

trainees can be tracked throughout the simulation and subsequently evaluated. This is achieved via 
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 sensor coils attached directly to the LPIT or other tools. The  simulator’s internal hardware, which 

enables realistic haptics as well as position detection of the insertion LPITs in the sensor mat, is 

identical for both variants. In the advanced variant, however, the use of a medical endoscope is 

possible, which can be inserted into the patient phantom via the replica of alaryn geal mask. In the 

simpler variant, the endoscope is replaced by a movable, inexpensive USB-endoscope. The software 

adapts to the variant used and can be integrated via an ordinary computer (4). To achieve the hybrid 

character of the simulator, the visual simulation of the vocal fold movement on the screen adapts to the 

position of the LPIT. Consequently, this connects the virtual and physical component, which, in turn, 

enables feedback on the surgery performed on the physical part. As shown in Fig. 14 (below (2)), 

additional surgical instruments such as spreader, forceps and needle holders can be used without 

limitation. Also sutures can be placed to mimic and train the implantation procedure more accurately.

 IV. DISCUSSION

 A. Usability and Haptics

 Fig. 13. Comparison between real position values (+) and measured  positions (o) as average of 12 

measurements. A grid of 7 x 9 with a grid size of 4mm in each direction was used. Fig. 14. Final 

simulator with all components; (1) simulator in box, (2) simulator with head and neck replica for more 

realism (high fidelity trainer), (3) electromagnetic position tracking system, (4) tabletcomputer for 

virtual extension. 9.44 ± 6.02%(1.57 ±0.94mm)forpin2region,9.18 ± 5.18% (1.51 ± 0.82mm) for pin 3 

region and 9.57 ±5.11% (1.61 ± 0.82mm) for pin 4 region respectively. C. Final Setup The complete 

setup with two different versions of the simulator can be seen in Fig. 14. Either the simplified, more 

mobile version can be used (1), or the more advanced version (2), which is additionally equipped with 

electromagnetic tracking (3) (NDI Aurora, Planar 20-20 V2 from NDI Europe GmbH, Radolfzell, 

Germany) of the LPITs. The movements of the LPIT induced by the trainees can be tracked throughout 

the simulation and subsequently evaluated. This is achieved via sensor coils attached directly to the 

LPIT or other tools. The simulator’s internal hardware, which enables realistic haptics as well as 

position detection of the insertion LPITs in the sensor mat, is identical for both variants. In the advanced 

variant, however, the use of a medical endoscope is possible, which can  beinserted into the patient 

phantom via thereplica of alaryngeal mask. In the simpler variant, the endoscope is replaced by a 

movable, inexpensive USB-endoscope. The software adapts to the variant used and can be integrated 

via an ordinary computer The main objective was to develop synthetic tissue with position evaluation 

capabilities (Smart Artificial Soft Tissue)  with an associated easy-to-use surgical simulator for 

demonstration. The physical patient phantom with its realistic haptic perception during LPIT insertion 

must fulfill three prerequisites that are challenging to combine. First, all relevant anatomical parts 
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should be manufactured as realistic as possible. Second,  manufacturing effort should be kept as low as 

possible to be cost-effective. Third, the phantom must be easy to disassemble so that the wear parts, 

sensor mat and cricoid, can be easily replaced and the simulator can be simply reassembled after wards 

(time consumption is less than two minutes). This ensures the reusability of most of the simulator, 

which is unfortunately not achieved by many other physical simulators [8]. These, as well as other 

previously mentioned requirements of the involved surgical experts and their feedback were integrated 

throughout this work. The needle insertion forces were mainly influenced by their experience [37] and 

verified by biomechanical measurements, also because no references from clinical practice are yet 

available due to the novelty of the intervention. Application examples of the simulator including videos 

can be found in the supplementary material. Regarding the reusability of penetrated  parts such as the 

cricoid, it is known from Esterer et al. [31] that a significant drop in insertion forces occurs after 10-15 

penetrations at identical insertion points. This behavior was also observed with the artificial cricoid. 

Since subsequent trainings on the simulator hardly lead to identical penetration points, it is  proposed to 

change the cricoid and sensor mat after every 20-30 simulations. 

The software is simple, symbolic, and can be operated entirely via touch screens. Like in real surgery 

procedures, various surgical instruments can be used additionally. This ensures maximum realism in 

terms of dexterity and haptics. 

According to the experts, both peaks in the force progression of the artificial cricoid are essential, as 

two pressure points are always clearly notable when penetrating the cricoid. An optimisation of the 

force profile was achieved by the reduction of the wall thickness and the additional coating mentioned 

in chapter II-B1. This led to the crucial first peak. Thus, both the  expert knowledge and the information 

of the measurement data were incorporated. As some natural spread is always present in organic 

tissues, the artificial cricoids are considered haptically similar enough (especially with regard to the 

characteristics mentioned in chapter III-A) to ensure realistic training.

The success of a surgery completed on the simulator can  be read directly from the position of the 

inserted electrodes. The quality of the surgery can be quantified by the number of retractions or too 

deep penetrations.With the high-fidelity version, it is also possible to record the tool path directly inside 

the phantom for detailed analysis and discussion in a debriefing session.

 B. Calibration and Contacting Problems

 The calibration of the sensor should compensate for in homogeneities and take the changes of the 

contact resistances into account after replacing the sensor mat. High resistance contacts are caused, for 

example, by the concentration, distribution and shape of the conductive carbon black particles 

embedded in the silicone as well as the geometry of the contact point [36]. In contrast to others [34], the 

contact resistance between sensor mat and the electrodes was reduced by increasing the contact 
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pressure of the clamp holding the sensor mat and by using gold electrodes. Increasing the diameter of 

the electrodes and thus the contact area also had a positive effect on the undesired resistances. 

Calibration requires to open and disassemble the  simulator and to place the LPIT beneath the electrode 

pins. Calibration with out manual intervention of the user could be realized with four double electrodes 

,which allows to measure the contact resistance directly. However, this would lead to considerably 

higher cabling and electronic hardware costs, especially if more than one sensor mat will be operated 

simultaneously. 

C. Positioning Accuracy and Further Application 

In contrast to other, contact-based position sensing in hybrid simulators [31], the developed Smart 

Artificial Soft Tissue offers the advantages of continuous, two-dimensional position detection. The 

accuracy of the proposed position reconstruction method depends strongly on the conductivity ratio 

between electrode pins and sensor mat. Therefore it is recommended to adjust the shunt resistors 

accordingly to achieve a mostly undistorted reconstruction grid. The estimation of the conductivity 

ratio by means of calibration measurements allows to optimally adjust there construction method to 

current operation conditions. The calibration routine should be performed once a day, typically when 

starting the simulator. Thus the usability is only slightly affected by performing the calibration 

procedure. The reconstruction accuracy is sufficient with an average deviation of 1.23mm in the central 

region for accurate hotspot detection. Larger errors only occur along the borders of the sensor domain 

due to unavoidable local stresses on the sensor mat or in homogeneities due to manufacturing 

inaccuracies. However, errors in these areas are not critical and hardly pose any problems for the 

simulated intervention. Since the optimal areas in the PCA  muscles vary for different patients and have 

a size of about 9 × 18 mm, the accuracy is sufficient for an efficient training. Additional averaging of 

several measurements further increases  the accuracy. 

Bending of the car bon black-silicone composite hardly affects the results due to the thinness of the 

sensor mat in relation to the bending radius and the method of position determination. The resistance 

changes due to low strain and compression resulting  from bending partially compensate ,although not 

completely due  to non linearity [28], [29]. The remaining minimal change in resistance is uniformly 

distributed over the mat an dis compensated by the calibration (fitting the system to the general 

resistance conditions). These assumptions are confirmed by the results, since the morphology of the 

determined positions corresponds to that of the real positions.

 With the actual setup, the pin voltages are measured directly  with a 10-bit ADC of the used micro 

controller, which limits the position accuracy, especially when small position changes occur or the 

LPIT is near the boundary of the sensor domain. The absence of more complex electrical circuitry is 

intended to demonstrate the robustness of this technology even under unfavorable conditions. To 
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establish it as a basic element for future hybrid surgery simulators, the functionality was demonstrated 

with the simplest possible elements. A possible improvement  would be the usage of differential 

amplifiers with programmable gains. This would allow to adopt the gains to maximize measurement 

resolution. A further accuracy improvement would be possible by introducing additional measuring 

electrodes along the boundary of the sensor mat. However, this would be accompanied by a higher 

system complexity and an increased number of components.

 For future projects, the Smart Artificial Soft Tissue developed  here can be used for various biopsy 

simulators or similar, in which conductive tools are inserted into tissue. This would provide a new basic 

element to accelerate the development of future hybrid surgical simulators as well as a post-simulation 

automatic evaluation capability that is missing in many physical simulators [8].

 V. CONCLUSION

 Smart Artificial Soft Tissue offers a fundamental key element  for hybrid simulators which was 

demonstrated by a surgical simulator for implanting the electrode so falary geal pacemaker. The sensor 

technology is based on the inversion of resistance mapping between a conductive sensor layer made of 

carbonblack-silicone composite and a voltage carrying surgical instrument in contact. With this type of 

sensor technology ,it is possible to extract relative position data from surgical instruments in haptically 

adapted soft tissue-mimicking artificial anatomies with sufficient accuracy.
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