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A B S T R A C T

 Hypergraphs, as a special type of graph, can be leveraged to better model relationships among 

multiple entities. In this article, we focus on the task of hyperlink prediction in directed hypergraphs, 

which finds a wide spectrum of applications in knowledge graphs, chem-informatics, bio-

informatics, etc. Existing methods handling the task overlook the order constraints of the hyperlink’s 

direction and fail to exploit features of all entities covered by a hyperlink. To make up for the 

deficiency, we present a performant pipelined model, i.e., a two-stage framework for directed 

hyperlink prediction method (TF-DHP), which equally considers the entity’s contribution to the form 

of hyperlinks, and emphasizes not only the fixed order between two parts but also the randomness 

inside each part. The TF-DHP incorporates two tailored modules: a Tucker decomposition-based 

module for hyperlink prediction, and a BiLSTM-based module for direction inference. Extensive 

experiments on benchmarks—WikiPeople, JF17K, and ReVerb15K—demonstrate the effectiveness 

and universality of our TF-DHP model, leading to state-of-the-art performance. 

Keywords: hyperlink prediction; hypergraph; Tucker decomposition

Introduction 

Link prediction benefits in amplifying the relations in graph-structured data [1], arousing interest from 

both academia and industries. Existing research mainly focuses on simple graphs where a link (also 

known as a relation) associates with two entities (also known as an entity), while some real-world 

relations consist of more than two entities, such as chemical reactions [2], co-authorship relations [3], 

and social networks [4], etc. As shown in Figure 1, the “Located In” relation contains NYC, New York 

City, The Big Apple, USA, and The United States, as follows:

 Thus, a hyperlink is coined to model such relations, and the graph comprised of hyperlinks is defined as 

a hypergraph [5]. As the relations among entities are sophisticated, the construct of a hypergraph is time-

consuming and hence expensive, making its incompleteness more severe than a simple graph. To 

mitigate the problem, a hyperlink prediction task is introduced to facilitate the research [6]. Similar to 

the goal of link prediction in simple graphs, the task tries to complete the missing hyperlinks in a given 

hypergraph.

 Example 1. Consider the bottom ellipse in green in Figure 1, given several entities, e.g., NYC, New 

York City, The Big Apple, USA, The United States; the target of the hyperlink prediction is to determine 

whether  there  is  a  hyperl ink and what  i t  i s  ( i .e . ,  “Located In”)  once exis t ing.  
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Thus,  machine should also acquire the ability to predict the direction of the hyperlink to form the final
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A B S T R A C T

Extracting hierarchical structure in graph data is becoming an important problem in fields such as 

natural language processing and developmental biology. Hierarchical structures can be extracted by 

embedding methods in non-Euclidean spaces, such as Poincaré embedding and Lorentz embedding, 

and it is now possible to learn efficient embedding by taking advantage of the structure of these 

spaces. In this study, we propose embedding into another type of metric space called a metric cone by 

learning an only one-dimensional coordinate variable added to the original vector space or a pre-

trained embedding space. This allows for the extraction of hierarchical information while 

maintaining the properties of the pre-trained embedding. The metric cone is a one-dimensional 

extension of the original metric space and has the advantage that the curvature of the space can be 

easily adjusted by a parameter even when the coordinates of the original space are fixed. Through an 

extensive empirical evaluation we have corroborated the effectiveness of the proposed cone 

embedding model. In the case of randomly generated trees, cone embedding demonstrated superior 

performance in extracting hierarchical structures compared to existing techniques, particularly in 

high-dimensional settings. For WordNet embeddings, cone embedding exhibited a noteworthy 

correlation between the extracted hierarchical structures and human evaluation outcomes.

 Keywords: graph embedding; non-Euclidean space; WordNet

Introduction 

 In recent years, machine learning methods for graph data have been an important topic, because graphs 

are suitable for representing the relation between multiple objects, such as social networks [1,2], links 

embedded in web pages [3], cells’ interactions [4], and more. In particular, methods for extracting 

hierarchical structures from graph data are needed in fields such as cell engineering and natural language 

processing. Considering the structure of knowledge behind language is important for natural language 

processing tasks in general. The hierarchical structure of words provides useful information for 

improving the accuracy of question answering and semantic search [5,6]. In the field of developmental 

biology, various methods have been proposed for analyzing single-cell RNA sequence (scRNAseq) data 

to reveal the process by which an undeveloped cell develops into a cell with specific features [7]. Since 

scRNAseq data itself does not have a hierarchical structure, the hierarchical structure must be extracted 

from the data or from a graph constructed using the data. The methodforextracting hierarchical 

structures must have some scalability when it is applied to data sets with a large size and high dimensions 

such as scRNAseq data. The most common method for extracting the structure of a graph is to learn the 

embedding vector of nodes. Methods for learning node embeddings can be classified into two types: (1) 
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 semi-supervised learning based on GNN [8–10] and (2) unsupervised  learning [11] (based on random-

walk [12], matrix factorization [13], and probabilistic methods [14], etc.). Graph neural networks 

(GNNs) are a type of neural network designed to operate on graph-structured data, allowing them to 

model complex relationships between entities, and capture both local and global information in the 

graph. This is achieved through the use of message passing mechanisms, which enable nodes to 

exchange information with their neighbors and aggregate that information into a new representation. 

Although it is possible to solve tasks that require hierarchical structure information using only GNNs, 

there are many advantages to using embedded representations, such as the expected reduction in 

computational complexity if the hierarchical structure is extracted in advance for embedding. On the 

other hand, the graph embedding converts each graph into a vector representing features of the graph and 

such vector representation can be tuned for solving individual tasks, which reduces the overall 

computational complexity. In this paper, we propose a novel graph embedding method for extracting its 

hierarchical structure from an undirected graph. There have been many graph embedding methods for 

extracting the hierarchical structure of a graph utilizing a hyperbolic space [15,16], such as Poincaré 

embedding [17–20], Lorentz embedding [21], and embedding in a hyperbolic entailment cone [22]. 

These methods use similar loss functions but with different metrics of the space in which graphs are 

embedded. Non-Euclidean spaces with non-zero curvature can learn embedding efficiently by adjusting 

their curvature to the hierarchically structured data. In particular, a Poincaré ball is a space of a negative 

constant curvature, which is characterized by the fact that the length of the circumference exponentially 

increases in the order of the radius when centered at the origin. An efficient embedding of tree-structured 

data utilizing this feature has also been proposed [23]. The Lorentz model of a hyperbolic space can 

explicitly describe geodesics and the accuracy of distance calculation becomes stable in the 

optimization [21]. The metric cone used as the embedding space in this study is a space defined as a one-

dimensional extension of a base metric space. The base metric space can be not only a vector space but 

for any geodesic metric space such as Riemannian manifolds and metric graphs. The dimensions of the 

metric cone are only one dimension higher than the original space. It is known that the curvature of this 

space can be varied and a method of changing the structure of the data space for analysis has also been 

proposed [24]. The definition and details of the metric cone will be explained in Section 2.3. In this 

paper, we propose the use of the metric cone as an embedding method for hierarchical graphs. Thanks to 

the properties of metric cones, the proposed method has the following five advantageous features 

compared to existing methods. First, it optimizes an only one-dimensional coordinate corresponding to 

“the height of the metric cone” (a one-dimensional parameter added to the base space) as an indicator of 

hierarchy. Therefore, a significant reduction in computational complexity can be expected compared to 

optimizing all variables.  Secondly, it can be applied to any pre-trained embeddings using a geodesic 

metric space including the Poincaré ball and the Lorentz model. When extracting hierarchical 

information for another purpose from an embedding already learned by other embedding methods, the 
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 extraction of hierarchical structure can be accomplished by learning only one additional coordinate 

variable. Due to this scalability, the proposed method can be combined with various existing embedding 

methods to achieve hierarchical extraction with a variety of features. Thirdly, the curvature of 

embedding space varies monotonically with , a parameter in the distance function of embedding space, 

and therefore can be tuned by it. As explained in Section 3.2, parameter corresponds to the generatrix of 

the metric cone and this fact provides an intuitive explanation for the monotonically decreasing 

curvature of the embedding space as the parameter is increased; while there have been some methods for 

tuning the curvature of some graph embedding spaces [25,26], the metric cone allows the curvature of 

the space to be tuned by changing while keeping the coordinates of the original space fixed. Therefore, 

when adjusting the curvature of the embedding space to match the training data, only one-dimensional 

parameters need to be learned. As shown in  the experiments, it is suitable to embed data with a smaller 

curvature in higher dimensions. Thus, it is important to adjust curvature depending on the dimension of 

the destination space and the structure of the data to be embedded. Fourthly, the uniqueness of the 

embedding is guaranteed when optimizing the loss function. When performing graph embedding in a 

space where isometric transformations exist, there is the problem of unstable learning due to the 

existence of multiple embeddings such that the distance from the origin of each point can be different, 

even though the distances between all points are identical. Usually, the distance from the origin is used as 

the height of the hierarchy, resulting in multiple solutions with different hierarchical structures. On the 

other hand, since there is no isometric mapping for a sufficiently large number of points in a metric cone 

as proven in Section 3.1, it is theoretically guaranteed that the embedding is unique and the learning is 

stable. Lastly, we can reduce the amount of computation for the parts other than preprocessing, 

regardless of the dimension. In addition, because the embedding in the original Euclidean space is 

preserved, it can be used as an input to the neural network and can be easily applied to other tasks. The 

subsequent sections of this paper are organized as follows. First, in Section 2, wepropose the method of 

graph embedding in a metric cone, with the introduction of (1) graph embedding in non-Euclidean 

spaces, and (2) the definition and properties of  cones. In Section 3, theoretical arguments ensure the 

validity of the proposed method. First, weprove that the identifiability of the graph embedding, which 

does not hold for existing methods, holds for the cone embedding. Next, we show that the curvature of 

the metric cone varies monotonically with the parameter . In Section 4, we present experimental results 

using some real and artificial graph data, followed by a conclusion and future perspectives in Section 5.

2. Methods

 2.1. Problem Settings

 From this point onward, the set of edges in an undirected graph G is denoted by E, the set of vertices by 

V, and the embedded space by X. Then, our target is finding an embedding : V Xandafunctionh : X 

Rsuchthath( (v))representsthehierarchy of v V.Function h canusually be expressed simply as a 

coordinate value of X. Note that, since G is an undirected graph, the problem is ill-posed if there are no 
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 assumptions about the relationship between the structure of the graph and the hierarchy of vertices. As 

in existing works, we implicitly assume that the branching of the graph is like that of a rooted tree, i.e., 

the higher the hierarchy, the smaller the number of vertices, and the lower the hierarchy, the more 

vertices.

 2.2. Graph Embedding in Non-Euclidean Spaces

 Out learning steps are similar to Poincaré embedding. We learn the embedding of a graph G 

bymaximizing the following objective function:

2.3. The Metric Cone

 The metric cone is similar to ordinary cones (e.g., circle cones) in the sense that it is defined as a 

collection of line segments connecting an apex point to a given set. However, the metric cone has a 

notable property such that every point in the original set is embedded

 at an equal distance from the apex point and this is a desirable property for hierarchical structure 

extraction.  The metric cone has been studied as an analogy to the length metric spaces of the tangent 

cone for differential manifolds with singularities. Length metric space is a metric space where the 

distance between any two points is equal to the shortest curve length connecting them. Length metric 

space includes Euclidean spaces, normed vector spaces, manifolds (e.g., Poincaré ball; sphere), metric 

graphs, and many other metric spaces. Assume the original space Z is a length metric space, then the 
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 metric cone generated by Z is X := Z [0,1] / Z 0 with a distance function determined as follows:

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 26



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 27



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 28



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 29



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 30



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 31



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 32



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 33



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 34



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 35



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 36



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 37



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 38



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 39



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 40



 References

 1. Zhang, J.; Ackerman, M.S.; Adamic, L. Expertise networks in online communities: Structure and 

algorithms. In Proceedings of the 16th international Conference on World Wide Web, Banff, AB, 

Canada, 8–12 May 2007; pp. 221–230.

 2.  DeChoudhury, M.; Counts, S.; Horvitz, E. Social media as a measurement tool of depression in 

populations. In Proceedings of the 5th Annual ACM WebScience Conference, Paris, France, 2–4 May 

2013; pp. 47–56.

 3.  Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to 

the Web; Technical Report; Stanford InfoLab, Stanford University: Stanford, CA, USA, 1999.

 4.  Barabasi, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. 

Rev. Genet. 2004, 5, 101–113. [CrossRef] [PubMed]

 5.  Yahya, M.; Berberich, K.; Elbassuoni, S.; Weikum, G. Robust question answering over the web of 

linked data. In Proceedings of the 22nd ACMInternational Conference on Information & Knowledge 

Management, San Francisco, CA, USA, 27 October–1 November 2013; pp. 1107–1116.

 6.  Hoffart, J.; Milchevski, D.; Weikum, G. STICS: Searching with strings, things, and cats. In 

Proceedings of the 37th International ACMSIGIRConference on Research & Development in 

Information Retrieval, Gold Coast, Queensland, Australia, 6–11 July 2014; pp. 1247–1248.

 7.  Klimovskaia, A.; Lopez-Paz, D.; Bottou, L.; Nickel, M. Poincaré maps for analyzing complex 

hierarchies in single-cell data. Nat. Commun. 2020, 11, 2966. [CrossRef] [PubMed]

 8.  Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 

2016, arXiv:1609.02907.

 9. Ribeiro, L.F.; Saverese, P.H.; Figueiredo, D.R. struc2vec: Learning node representations from 

structural identity. In Proceedings of the 23rd ACM SIGKDDInternational Conference on Knowledge 

Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 385–394.

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 41



 10. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural 

Inf. Process. Syst. 2017, 30, 1025–1035.

 11. Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. 

Knowl. Based Syst. 2018, 151, 78–94. [CrossRef]

 12. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San 

Francisco, CA, USA, 13–17 August 2016; pp. 855–864.

 13. Cao,S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information. 

In Proceedings of the 24th ACMInternational on Conference on Information and Knowledge 

Management, Melbourne, VIC, Australia, 19–23 October 2015; pp. 891–900.

 14. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network 

embedding. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 

18–22 May 2015; pp. 1067–1077. 

15. Sun, Z.; Chen, M.; Hu, W.; Wang, C.; Dai, J.; Zhang, W. Knowledge Association with Hyperbolic 

Knowledge Graph Embeddings. In Proceedings of the 2020 Conference on Empirical Methods in 

Natural Language Processing (EMNLP), Association for Computational Linguistics, Online, 16–20 

November 2020; pp. 5704–5716. [CrossRef]

 16. Rezaabad, A.L.; Kalantari, R.; Vishwanath, S.; Zhou, M.; Tamir, J. Hyperbolic graph embedding 

with enhanced semi-implicit variational inference. In Proceedings of the International Conference on 

Artificial Intelligence and Statistics, PMLR, Virtual, 13–15 April 2021; pp. 3439–3447.

 17. Nickel, M.; Kiela, D. Poincaré embeddings for learning hierarchical representations. In 

Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 

December 2017; pp. 6338–6347.

 18. Zhang,Z.; Cai, J.; Zhang, Y.; Wang, J. Learning hierarchy-aware knowledge graph embeddings for 

link prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 

7–12 February 2020; Volume 34, pp. 3065–3072.

 19. Chami, I.; Wolf, A.; Juan, D.C.; Sala, F.; Ravi, S.; Ré, C. Low-Dimensional Hyperbolic Knowledge 

Graph Embeddings. In Proceedings of the 58th Annual Meeting of the Association for Computational 

Linguistics, Association for Computational Linguistics, Online, 5–10 July 2020; pp. 6901–6914. 

[CrossRef]

 20. Dhingra, B.; Shallue, C.; Norouzi, M.; Dai, A.; Dahl, G. Embedding Text in Hyperbolic Spaces. In 

P r o c e e d i n g s  o f  t h e  T w e l f t h  W o r k s h o p o n G r a p h -

B a s e d M e t h o d s f o r N a t u r a l L a n g u a g e P r o c e s s i n g ( T e x t G r a p h s -

12),AssociationforComputationalLinguistics, NewOrleans, LA, USA, 6 June 2018; pp. 59–69. 

[CrossRef]

 21. Nickel, M.; Kiela, D. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic 

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 42



Geometry. In Proceedings of the Machine Learning Research, PMLR, Stockholmsmässan, Stockholm, 

Sweden, 10–15 July 2018; Volume 80, pp. 3779–3788.

 22. Ganea, O.; Becigneul, G.; Hofmann, T. Hyperbolic Entailment Cones for Learning Hierarchical 

Embeddings. In Proceedings of the Machine Learning Research, PMLR, Stockholmsmässan, 

Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 1646–1655.

 23. Sala, F.; De Sa, C.; Gu, A.; Ré, C. Representation tradeoffs for hyperbolic embeddings. In 

Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 

July 2018; pp. 4460–4469.

 24. Kobayashi, K.; Wynn, H.P. Empirical geodesic graphs and CAT (k) metrics for data analysis. Stat. 

Comput. 2020, 30, 1–18. [CrossRef]

 25. Wilson, R.C.; Hancock, E.R.; Pekalska, E.; Duin, R.P. Spherical and Hyperbolic Embeddings of 

Data. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2255–2269. [CrossRef] [PubMed]

 26. Chami,I.; Ying, Z.; Ré, C.; Leskovec, J. Hyperbolic Graph Convolutional Neural Networks. In 

Proceedings of the Advances in Neural Information Processing Systems; Wallach, H., Larochelle, H., 

Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, 

USA, 2019; Volume 32.

 27. Sturm, K.T. Probability measures on metric spaces of nonpositive curvature. In Proceedings of the 

Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces: Lecture Notes A Quart, Program 

Heat Kernels, Random Walks, Analysis Manifolds Graphs, Emile Borel Cent. Henri Poincaré Institute, 

Paris ,  France,  16 Apri l–13 July  2002 ;  Volume 338,  p .  357.  Avai lable  onl ine: 

https://bookstore.ams.org/conm-338 (accessed on 24 February 2023).

 28. Deza, M.M.; Deza, E. Encyclopedia of Distances; Springer: Berlin/Heidelberg, Germany, 2009; 

pp. 1–583. 29. Loustau, B. Hyperbolic geometry. arXiv 2020, arXiv:2003.11180.

 30. Sarkar, R. Low distortion delaunay embedding of trees in hyperbolic plane. In Proceedings of the 

International Symposium on Graph Drawing, Eindhoven, The Netherlands, 21–23 September 2011; pp. 

355–366.

 31. Barabasi, A.L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. 

[CrossRef] [PubMed]

 32. Janson, S. Riemannian geometry: Some examples, including map projections. Notes. 2015. 

Available online: http://www2.math. uu.se/~svante/papers/sjN15.pdf (accessed on 24 February 2023). 

.

 33. Cox,D.; Little, J.; OShea, D. Ideals, Varieties, and Algorithms: An Introduction to Computational 

Algebraic Geometry and Commutative Algebra; Springer Science & Business Media: 

Berlin/Heidelberg, Germany, 2013.

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 43



 Large-Signal Stability of the Quadratic Boost Converter Using 
a Disturbance Observer-Based Sliding-Mode Control

  Satyajit Chincholkar 1,*, Mohd Tariq and Shabana Urooj 3 
 Department of Electronics and Telecommunication Engineering, School of E&TC Engineering, 

MIT Academy of Engineering, Pune 412105, India Department of Electrical Engineering, ZHCET, 
Aligarh Muslim University, Aligarh 202002, India;  Department of Electrical Engineering, College 

of Engineering, Princess Nourah bint Abdulrahman University P.O. Box 84428, Riyadh 11671, 
Saudi Arabia Correspondence:

A B S T R A C T

The quadratic boost (QB) converter is a fourth-order system with a dc gain that is higher than the 

traditional second-order step-up configuration. The modern controllers that control these high-order 

dc–dc converters often only guarantee local stability around a steady-state equilibrium point, which 

is one of their primary drawbacks. In this article, a non-linear robust control law design to attain 

large-signal stability in this single switch QB converter is presented. In the presence of an 

unpredictable load, the control objective is to maintain the regulation of an output voltage. The 

Brunovsky canonical model of the converter was derived first, and the non-linear disturbance 

observer-based sliding-mode (SM) control law is designed based on it. An observer variable precisely 

estimates the output disturbances. The detailed process for deriving the control signal is described in 

this paper and the large-signal stability of the closed-loop converter system is ensured via the 

Lyapunov function. Finally, some simulation results are shown to validate the usefulness of the given 

controller.

 Keywords: quadratic converter; sliding-mode control; observer

Introduction 

 The dc–dc boost converter is employed in several fields, including electric vehicles, telecommunication 

equipment, energy systems based on non-conventional resources, and so on [1–3]. For instance, the 

voltage at the output of a single fuel cell is very low, of the order of 1.1 V, and its stacked version could 

produce around from 24 V to 60 V. However, this voltage is not enough at the input of an inverter for 

applications in the power range from 1 kWto5kW.Thus,adc–dcconverter can be employed between the 

nonconventional energy resource and inverter and its gain should be high enough to make up for the 

differences [1]. The second-order classical boost converter can step up the output voltage, but its gain is 

limited because it needs to operate at a considerably high duty ratio to produce high gain, and switching 

devices have limited finite switching durations. It may also incur EMI and reverse recovery issues of the 

diode. Lastly, working at high duty ratio values could affect the system’s dynamic response to parameter 

variations [4]. One of the solutions to address this problem is using transformer-based dc–dc power 

converters to provide high gain before interfacing with inverters. However, if a particular utilization 

area does not need any isolation, the usage transformer becomes redundant, and it ultimately increases 

the system’s size and pricing. The high-order transformer-less power converters are thus receiving 

attention because they do not only eliminate the use of transformers but also avoid high values of the 
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duty ratio to offer a large conversion ratio [5–8]. Moreover  the voltage stress is also limited in their 

cases. Among them, the quadratic boost (QB) converter is a popular candidate due to its high efficiency, 

smaller size, and ease of control due to having a single active switch [6]. The control aspect of high-step-

up converters like the QB converter has recently been the interest of some research [6–12]. However, 

their control is not very straight forward because right half-plane zeroes are present in the control to load 

voltage transfer function of these converters [13]. Because of this, the closed-loop system could lose its 

stability. To address the first concern, one of the widely used regulation methods for the higher order 

power converters is employing the current through the inductor for feedback purposes [14]. The 

additional current-loop, apart from the basic voltage-loop, provides stability to the system 

andgivesinbuilt overcurrent protection. In [13], the application of the current-based control scheme for 

the quadratic boost converter was investigated. The more advanced current-mode control, based on an 

adaptation algorithm for the sixth-order boost converter, was discussed in [15]. Even though all of these 

current-mode controllers are shown to provide a satisfactory response over a large range of parameter 

changes, they are based on the small-signal averaged model of the converter, which can only ensure 

stability in the vicinity of a steady-state operating point. Asliding-mode (SM) scheme is another well-

employed scheme that is suitable for dcdc converters [16–24]. Traditionally, hysteresis-modulation is 

used for the implementation of the SM controller for dc–dc converters [6,20–22]. This method has 

recently been used to regulate the output voltage of several high-gain converters like the quadratic boost 

converter [6,20], the hybrid boost converter [21], and the zeta converter [22]. Although this method is 

easy to implement, its main drawback is that it may lead to chattering in the response. Also, since the 

switching frequency is not fixed, there could be large variations in the switching frequency in the 

presence of load and line variations. This maylead to increased switching losses and electromagnetic 

interference (EMI) issues. To address these concerns, recently, the constant-frequency SM scheme has 

been employed for high-order boost converters like the quadratic boost converter in [16]. In this method, 

the pulse-width-modulation (PWM) technique is used to generate the control signal. The various 

advantages offered by this method are ease of implementation, reduced chattering, and lower 

electromagnetic interference (EMI) issues. Some of the other state-of-the-art SM controllers for dc–dc 

converters based on the PWM approach are discussed in [17,18]. As can beseen, there has been 

considerable efforts made to wards the implementation of several non-linear controllers for high-order 

dc–dc converters. However, the main drawback of most of these controllers is that their stability is 

guaranteed only in the neighborhood of the equilibrium point. In other words, they guarantee only small-

signal stability and none of the works discussed so far address the large-signal stability of the controlled 

high-stepup power converters. Thus, to ensure smooth tracking in the presence of large and fast 

variations in the system parameters, the problem of the design of a robust and globally stable controller 

for high-step-up dc–dc converters still needs to be addressed. To address this, a new SM controller 

design based on disturbance observer (DO) for the QB converter’s output voltage regulation is 
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 presented. The main contributions of the paper are—(I) first, as opposed to the existing methods 

discussed above, the proposed controller ensures global stability, which has been proved using the 

Lyapunov function. To this end, the sliding surface and corresponding observer variables are selected 

such that the suitable Lyapunov function can be selected for the global stability analysis; (ii) secondly, 

instead of using the conventional averaged state-space model for the controller design and analysis, the 

Brunovsky canonical form of the model for the quadratic converter is derived and used for the controller 

design. This model accommodates the disturbance variables and aids in the derivation of the control law 

based on the proposed DO-based sliding surface; (iii) lastly, in order to avoid the chattering and EMI 

concerns, the PWM method of implementation is used for the implementation of the globally stable SM 

controller. The main control objective is to regulate the output voltage in the presence of parameter 

variations such as load changes. An in-depth derivation of the equivalent control law control law and a 

thorough stability analysis are presented. The suitability of the proposed control scheme has been 

authenticated by simulation results performed in MATLAB Simulink. It is important to mention that the 

design methodology of the given control law is such that it can be applied for the control of other types of 

high-step-up converters as well. The manuscript is structured as follows. In Section 2, the circuit 

diagram along with scheme has been authenticated by simulation results performed in MATLAB 

Simulink. It is important to mention that the design methodology of the given control law is such that it 

can be applied for the control of other types of high-step-up converters as well. The manuscript is 

structured as follows. In Section 2, the circuit diagram along with an averaged model of the QB 

converter is given. Next, Section 3 discusses the detailed control law design and the global stability 

analysis of the system. Finally, in Section 4, some an averaged model of the QB converter is given. Next, 

Section 3 discusses the detailed control law design and the global stability analysis of the system. 

Finally, in Section 4, some simulation results are given to establish the ability of the derived control law 

to handle large signal disturbances, followed by the conclusion in the last section.

2. State-Space Modeling for Quadratic-Ratio Converter 

The quadrtaic boost topology’s circuit schematic is depicted in Figure 1a. It has an extra step-up 

arrangement compared to the second-order conventional boost topology. This additional arrangement 

primarily consists of an additional boost stage but without an The quadrtaic boost topology’s circuit 

schematic is depicted in Figure 1a. It has an extra step-up arrangement compared to the second-order 

conventional boost topology. This additional arrangement primarily consists of an additional boost 

stage but without an additonal active switch. The use of a single active switch reduces the converter 

switching losses. In summary, to increase the gain of the orthodox step-up topology, two boost 

converters are combined using one active switch to create this converter [25].
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The following presumptions are made in order to streamline the modeling and create the topology’s 

averaged modeling equations: (a) The MOSFET ‘S’ switches on and off in synchrony with all of the 

diodes; (b) the dc–dc system works in a continuous mode of conduction; (c) all of the diodes and the 

semiconductor switches are viewed as perfect components with very low parasitic resistance. The 

following describes the system’s two operational modes. ‘Mode 1’: In this mode, diodes D2 and D3 are 

biased in the reverse direction while D1 is forward biased. Also, the semiconductor device ‘S’ is closed 

while the device is working in this first condition. Energy is stored in the two inductors, L1 and L2, by 

the input voltage sources E and C1, respectively. The derivative expressions for this mode of operation 

can be obtained by employing Kirchhoff’s laws of voltage and current (KVL and KCL) in Figure 1b, and 

as a result we obtain (see Appendix A for detailed derivation):

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 47



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 48



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 49



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 50



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 51



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 52



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 53



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 54



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 55



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 56



Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 57



 References

 1 .  N o v a e s , Y. R . ; B a r b i , I . ; R u f e r, A . A n e w t h r e e - l e v e l q u a d r a t i c ( T- L Q ) D C -

DCconvertersuitableforfuelcellapplications. IEEJ Trans. Ind.Appl.2008,128,459–467. [CrossRef]

 2. Chakraborty,S.;Vu,H.-N.;Hasan,M.M.;Tran,D.-D.;Baghdadi,M.E.;Hegazy,O.DC-

D C C o n v e r t e r T o p o l o g i e s f o r E l e c t r i c  V e h i c l e s , P l u g -

inHybridElectricVehiclesandFastChargingStations:StateoftheArtandFutureTrends.Energies2019,12,

1569. [CrossRef]

 3 .  R ibe i ro ,E .F.F. ;Cardoso ,A .M. ;Bocca le t t i ,C . ;Mendes ,A .M.S .Pho tovo l ta i cDC-

D C c o n v e r t e r f o r T e l e c o m m u n i c a t i o n s E n e r g y  S y s t e m s . 

InProceedingsofthe2009InternationalConferenceonCleanElectricalPower,Capri,Italy,9–11June2009. 

[CrossRef]

 4. Lee,S.;Kim,P.;Choi,S.Highstep-upsoft-switchedconvertersusingvoltagemultipliercells. 

IEEETrans.PowerElectron.2013,28, 3379–3387. [CrossRef]

 5 .  L u o , F . L . P o s i t i v e o u t p u t L u o c o n v e r t e r s : V o l t a g e l i f t t e c h n i q u e . 

IEEProc.Electr.PowerAppl.1999,146,415–432. [CrossRef]

 6.  Lopez-Santos,O.;Martinez-Salamero,L.;Garcia,G.;Valderrama-Blavi,H.;Sierra-

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 58



-Polanco,T.Robustsliding-modecontroldesign foravoltageregulatedquadraticboostconverter. 

IEEETrans.PowerElectron.2015,30,2313–2327. [CrossRef]

 7. Chincholkar,S.H.;Malge,S.V.;Patil ,S.L.DesignandAnalysisofaVoltage-ModeNon-

L i n e a r C o n t r o l o f a N o n - M i n i m u m - P h a s e 

PositiveOutputElementaryLuoConverter.Electronics2022,11,207. [CrossRef]

 8. Chan, C.Y. Comparative study of current-mode controllers for a high-order boost dc–dc converter. 

IET Power Electron. 2014, 7, 237–243. [CrossRef]

 9.  Morales-Saldaña, J.A.; Galarza-Quirino, R.; Leyva-Ramos, J.; Carbajal-Gutierrez, E.E.; Ortiz-

Lopez, M.G. Multiloop controller design for a quadratic boost converter. IET Electr. Power Appl. 2015, 

1, 362–367. [CrossRef]

10. Chincholkar, S.; Tariq, M.; Abdelhaq, M.; Alsaqour, R. Design and Selection of Inductor Current 

Feedback for the Sliding-Mode Controlled Hybrid Boost Converter. Information 2023, 14, 443. 

[CrossRef]

 11. Jiang, W.; Chincholkar, S.H.; Chan, C.-Y. Investigation of a voltage-mode controller for a DC-DC 

multilevel boost converter. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 908–912. [CrossRef]

 12. Dupont, F.H.; Rech, C.; Gules, R.; Pinheiro, J.R. Reduced-order model and control approach for the 

boost converter with a voltage multiplier cell. IEEE Trans. Power Electron 2013, 28, 3395–3404. 

[CrossRef]

 13. Chincholkar, S.H.; Chan, C. Investigation of current-mode controlled Cascade Boost converter 

systems: Dynamics and stability issues. IET Power Electron. 2016, 9, 911–920. [CrossRef]

 14. Cervantes, I.; Garcia, D.; Noriega, D. Linear Multiloop control of quasi-resonant converters. IEEE 

Trans. Power Electron. 2003, 18, 1194–1201. [CrossRef]

 15. Chan,C.-Y.; Chincholkar, S.H.; Jiang, W. Adaptive current-mode control of a high step-up DC–DC 

converter. IEEE Trans. Power Electron. 2017, 32, 7297–7305. [CrossRef]

 16. He,Y.; Luo, F.L. Sliding-mode control for dc-dc converters with constant switching frequency. IEEE 

Proc. Control. Theory Appl. 2006, 153, 37–45. [CrossRef]

 17. Ravichandran, S.; Patnaik, S.K. Implementation of dual-loop controller for positive output 

elementary Luo converter. IET Power Electron. 2013, 6, 885–893. [CrossRef]

 18. Tan, S.C.; Lai, Y.M. Constant-frequency reduced-state sliding- mode current controller for Cuk 

Converters. IET Power Electron. 2008, 1, 466–477. [CrossRef]

 19. Tan, S.C.; Lai, Y.M.; Tse, C.K. Indirect sliding mode control of power converters via double integral 

sliding surface. IEEE Trans. Power Electron. 2008, 23, 600–611.

 20. Chincholkar, S.H.; Jiang, W.; Chan, C.-Y. A normalized output error-based sliding-mode controller 

for the DC–DC cascade boost converter. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 92–96. 

[CrossRef]

 21. Chincholkar, S.H.; Jiang, W.; Chan, C.-Y. A modified hysteresis-modulation-based sliding mode 

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 59



 control for improved performance in hybrid DC–DC boost converter. IEEE Trans. Circuits Syst. II 

Express Briefs 2018, 65, 1683–1687. [CrossRef]

 22. Chan, C.-Y. Adaptive sliding-mode control of a novel Buck-boost converter based on Zeta 

Converter. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 1307–1311. [CrossRef]

 23. Russo, A.; Cavallo, A. Stability and Control for Buck–Boost Converter for Aeronautic Power 

Management. Energies 2023, 16, 988. [CrossRef]

 24. Canciello, G.; Cavallo, A.; Schiavo, A.L.; Russo, A. Multi-objective adaptive sliding manifold 

control for more electric aircraft. ISA Transactions 2020, 107, 316–328. [CrossRef] [PubMed]

 25. Ortiz-Lopez, M.G.; Leyva-Ramos, J.; Carbajal-Gutierrez, E.E.; Morales-Saldana, J.A. Modelling 

and analysis of Switch-mode Cascade Converters with a single active switch. IET Power Electron. 

2008, 1, 478–487. [CrossRef]

 26. Sira-Ramirez, H.; Ilic, M. Exact linearization in switched-mode DC-to-DC power converters. Int. J. 

Control. 1989, 50, 511–524. [CrossRef]

 27. Li, S.; Yang, J.; Chen, W.; Chen, X. Disturbance Observer-Based Control: Methods and 

Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 73–79.

 28. Khalil, H.K.; Grizzle, J. Nonlinear Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 

217–222. 29. Yu,J.; Yang, Z.; Kurths, J.; Zhan, M. Small-Signal Stability of Multi-Converter Infeed 

Power Grids with Symmetry. Symmetry 2021, 13, 157. [CrossRef]

 30. Mikhailov, E.; Pashentseva, M. Eigenvalue Problem for a Reduced Dynamo Model in Thick 

Astrophysical Discs. Mathematics 2023, 11, 3106. [CrossRef]

 31. Liu, H.; Li, R.; Ding, Y. Partial Eigenvalue Assignment for Gyroscopic Second-Order Systems with 

Time Delay. Mathematics 2020, 8, 1235. [CrossRef]

 32. Liu, R.; Wang, Z.; Zhang, X.; Ren, J.; Gui, Q. Robust Control for Variable-Order Fractional Interval 

Systems Subject to Actuator Saturation. Fractal Fract. 2022, 6, 159. [CrossRef]

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025)                                       Page No. 60








	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69

