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ABSTRACT

/ N
Hypergraphs, as a special type of graph, can be leveraged to better model relationships among

multiple entities. In this article, we focus on the task of hyperlink prediction in directed hypergraphs,
which finds a wide spectrum of applications in knowledge graphs, chem-informatics, bio-
informatics, etc. Existing methods handling the task overlook the order constraints of the hyperlink's
direction and fail to exploit features of all entities covered by a hyperlink. To make up for the
deficiency, we present a performant pipelined model, i.e., a two-stage framework for directed
hyperlink prediction method (TF-DHP), which equally considers the entity s contribution to the form
of hyperlinks, and emphasizes not only the fixed order between two parts but also the randomness
inside each part. The TF-DHP incorporates two tailored modules: a Tucker decomposition-based
module for hyperlink prediction, and a BiLSTM-based module for direction inference. Extensive
experiments on benchmarks—WikiPeople, JF17K, and ReVerbl5K—demonstrate the effectiveness
and universality of our TF-DHP model, leading to state-of-the-art performance.

Keywords: hyperlink prediction; hypergraph; Tucker decomposition
-

Introduction

Link prediction benefits in amplifying the relations in graph-structured data [1], arousing interest from
both academia and industries. Existing research mainly focuses on simple graphs where a link (also
known as a relation) associates with two entities (also known as an entity), while some real-world
relations consist of more than two entities, such as chemical reactions [2], co-authorship relations [3],
and social networks [4], etc. As shown in Figure 1, the “Located In” relation contains NYC, New York

City, The Big Apple, USA, and The United States, as follows:

NYC,New York City,The Big Apple "4 " USA,The United States.

Thus, a hyperlink is coined to model such relations, and the graph comprised of hyperlinks is defined as
a hypergraph [5]. As the relations among entities are sophisticated, the construct of a hypergraph is time-
consuming and hence expensive, making its incompleteness more severe than a simple graph. To
mitigate the problem, a hyperlink prediction task is introduced to facilitate the research [6]. Similar to
the goal of link prediction in simple graphs, the task tries to complete the missing hyperlinks in a given
hypergraph.

Example 1. Consider the bottom ellipse in green in Figure 1, given several entities, e.g., NYC, New
York City, The Big Apple, USA, The United States; the target of the hyperlink prediction is to determine

whether there is a hyperlink and what it is (i.e., “Located In”) once existing.
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Thus, machine should also acquire the ability to predict the direction of the hyperlink to form the final
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Figure 1. Sketch of two types of hypergraphs, The diagram on the left represents an undirected
hypergraph while the diagram on the right stands for a directed hypergraph. One ellipse denotes
a hyperlink. entities in the same ellipse share the same hyperlink. Arrow denotes the direction of
the hyperlink.

To approach this task, current studies mainly fall into two categories: (1) Translation-
based models try to generalize the translation constraint in simple graphs to hypergraphs,
e.g., m-TransH [7], RAE [5], and NHP [%]. m-TransH directly extends TransH [10] for binary
relations to the n-ary case, and RAE further integrates m-TransH with multi-layer perceptron
(MLTF) by considering the relatedness of entities. Since they use the sum after the projection
as the scoring function, when some entities in a hyperlink change, it may not be obvious
in the scoring function. {2} Neural-network-based models exploit structural information
of hypergraphs, e.g., MalLP [11], HGNN [12], and HyperGCN [13]. These methods design
some graph neural networks (GNNs) to absorb neighbouring features to improve entities’
representations. As GNMNs usually incorporate a large number of parameters, the sufficient
learning process relies on the amount of training samples.

Albeit attracting attention, hyperlink prediction is still notoriously challenging, since
existing studies neglect the cores of the task. First, sometimes, the accurate record of facts
in a hypergraph necessitates the direction of hyperlinks. For a directed hyperlink, the
entities can be divided into two parts—head and tail—based on the hyperlink’s direction.
This mandates that the order of the two parts matters; in contrast, the specific order in
each part is insignificant. As shown in Figure 1, without the arrow pointing, we cannot
figure out how these entities construct the relation “Located In”. In addition, NYC, New
York City,and The Big Apple (also known as the head) should be in front of USA and The
United States (also known as tail), but the order inside the head or tail does not affect the
determination. Nevertheless, existing methods mainly focus on undirected hyperlinks. The
only method, namely, NHP, tries to average the entity embeddings generated by GCN [14] to
calculate a score for inferring the hyperlink direction, which is too rudimentary to embody
the direction’s features. Second, as a hyperlink contains more than bwo entities, each entity
contributes to the final existence prediction. In this light, a good representation model
needs to consider the representation of all the individual entities involved in a hyvperlink
when making a determination. However, the current treatment of embedding tends to
apply a simple sum or average strategy. This might be insensitive to the number of entities
in a hyperlink since an entity with effusive containment could overwhelm other entities’
expressions. Last but not least, as it is sometimes complicated for even a human being to
annotate hyperlinks, there is a lack of training data, which can be currently insufficient to
train a large number of learnable parameters well.
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In order to address these challenges, we propose a simple vet effective model, which
is a Two-stage Framework for Directed Hyperlink Prediction, namely, TF-DHP. The model
is expected to equally consider the entity’s contribution to the form of hyperlinks and
emphasize not only the fixed order between two parts but also the randomness inside
each part. It conceives a pipeline of two tailored modules: a Tucker decomposition-based
module for hyperlink prediction and a BILSTM-based module for direction inference.

For predicting the existence of hyperlinks, we exploit Tucker decomposition to model
hyperlinks, which, to the best of our knowledge, has not been applied to hypergraphs except
simple graphs [15]. In particular, instead of applying three-order Tucker decomposition over
simple graphs, we employ high-order Tucker decomposition for hypergraphs. It produces
a core tensor, which represents the degree of interaction between entities. Then, we devise
a scoring function by the mode product of the tensor with each entity representation, which
evaluates the existence of hyperlinks. We theoretically show that the score is invariant
to the order of mode product with entities, though there is a direction of each hyperlink.
In addition, it is noted that the tensors from Tucker decomposition are usually of very
high order, which can bring about high computational complexity. To mitigate the issue,
we further introduce Tensor Ring (TR) [16] decomposition to decompose higher-order
tensors into mode products of several third-order tensors, which effectively reduces the
computational cost.

For inferring directions, we first recall that example in Figure 1. Once USA and The
United States are determined as the tail entities, the substances in the head entities are
implied, and if there is a change in one of the tail entities, the head entities are going to
be different. Thus, it is of importance for the model to pass the information between the
two parts both forward and backward. This motivates us to design a model that works
bidirectionally. In this connection, BILSTM [17] is utilized to serve as the base model. In
addition, the position of entities within the head (or tail) part is insignificant, and hence,
it is necessary to train the model to attend only to the order of the two parts. For this
characteristic, we keep the order of two parts but randomly shuffle entities within each
part to enforce the model to be ignorant of entity positions within head (or tail) part, while
being attentive to the order between the two parts. In this way, the data scale is increased
as a by-product, alleviating the lack of data.

Contribution. In summary, we make the following contributions:

. For existence prediction, we propose, among the first, to generalize Tucker decumpusi-
tion to a high dimension and introduce a tensor ring algorithm to reduce the model
complexity. We theoretically prove that the mode product for scoring a hyperlink is
invariant of the order of participating entities.

*  For direction inference, we conceive a BILSTM-based model that can take information
into consideration both forward and backward with respect to a hyperlink. A data
shuffling strategy is further incorporated to enforce the model to be ignorant of entity
positions within the head (or tail) part while being attentive to the order between the
two parts.

*  The modules constitute a new model, namely, TF-DHP for predicting directed hy-
perlinks. Through the experiments on several real-world datasets, we confirm the
superiority of TF-DHP over state-of-the-art models.
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Organization. The rest of the article is structured as follows. Section 2 introduces re-
lated work and Section 3 provides a detailed account of TF-DHP. Section 4 reports the
experimental setup and analyses the experimental results. Section 5 concludes the paper.

2. Related Work

In this section, we are going to review related work in link prediction on simple graphs,
undirected hypergraphs and directed hypergraphs.

2.1. Link Prediction on Simple Graph

Most of the link prediction methods on simple graphs can be divided into three
categories—linear mathematics models, non-linear convolutional models, and random
walk models.

There were many linear mathematics ways of link prediction created in recent years
such as RESCAL [18], DistMult [19], ComplEx [20], and SimplE [21]. RESCAL, which is
based on tensor factorization, performs collective learning via the latent components of
the model and provides an efficient algorithm to compute the factorization. DisMult is
a special case of RESCAL with a diagonal matrix per relation which reduces overfitting
while ComplEx extends DisMult to the complex domain. SimplE is based on Canonical
Polyadic (CI’) decomposition, in which subject and object entity embeddings for the same
entity are independent. TuckER [15] is a straightforward but powerful model based on the
Tucker decomposition; it considers the core tensor as the parameter tensor, and the scoring
function is defined by taking the modular product between the entities embedding vectors,
the relation embedding vector, and the core tensor. Because the information loss in the
calculation process is greatly reduced by using high-order tensors to define parameters,
TuckER is proved to be the best-performing linear mathematics model to handle the link
prediction task on simple graph.

Typical works of non-linear convolutional models are ConvE [22] and HypER [23].
ConvE is a simple multi-layer convolutional architecture for link prediction and is defined
by a single convolution layer, a projection layer to the embedding dimension, and an inner
product layer. HypER's hypernetwork generates relation-specific filters, and thus extracts
relation-specific features from the subject entity embedding. It necessitates no 2D reshaping
and allows entity and relation to interact more completely, rather than only around the
concatenation boundary.

LRW [24], MIRW [25], and MLRW [26] are random walk-based models for link predic-
tion on complex networks, LRW is conducted using pure random walking and selects the
destination entities based on a random manner. To help to improve the LRW, the concept
of asymmetric mutual influence of entities is presented, and using this concept, the walker
selects the next entity using its effect on the current entity and selects more efficient paths
for the next step. Therefore, entities with a more significant structural similarity will obtain
a higher score in the proposed algorithm MIRW. MLRW provides a framework to extend
the local random walk method to multiplex networks so that we can take advantage of
intra-layer and interlayer information presented in the network and increase the accuracy

of link prediction properly.
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2.2. Link Prediction on Undirected Hypergraph

The general work on the undirected hyperlink prediction can be divided into two
species, i.e., translation-based models and neural network-based models.

The representative model of the translation-based approaches are m-TrnasH [7] and
RAE [8]. m-TransH generalizes TransH [10] to the case of n-order relations, and it projects en-
tities onto the relation-specific hyperplane and defines the scoring function as the weighted
sum of projection results. RAE considers the possibility of common occurrence between
entities in n-order relations, establishes the correlation model through MLP, and reflects it
in scoring function. Since these models are extended from binary models, restrictions on
the representation of relations are also carried to the representation of n-order relations.

NaLP [11], HyperGCN [13], and Hyper-SAGNN [27] are three neural network-based ap-
proaches. HGNN is a general hypergraph neural network framework based on hypergraph
convolution operation, which can incorporate multi-modal data and complicated data
correlations. HyperGCN proposes a new method of training a GCN on hypergraph using
tools from the spectral theory of hypergraphs and applying the method to the problems
of SSL(hypergraph-based semi-supervised learning) and combinatorial optimization on
real-world hypergraphs. Hyper-SAGNN develops a new self-attention based graph neu-

ral network applicable to homogeneous and heterogeneous hypergraphs with variable
hyperlink sizes.

2.3. Link Prediction on Directed Hypergraphs

The research of link prediction on directed hypergraphs is not very mature, and most
methods prefer predicting the direction of the hyperlink after finishing predicting the
entities contained in the hyperlink. The NHP [9] model sets up two scoring functions
to predict hyperlinks and their directions based on the GCN template, and they divide a
hyperlink into two sub-hyperlinks and use their embedding vectors to compute the scoring
function for direction. However, as the embedding vectors of hyperlinks are from the
average value of entity embedding vectors, information about entities and their positions
is lost, which makes the performance of the model barely satisfactory.

3. Method

This section formalizes the task of the directed hypergraph link prediction and presents
the proposed method, including the framework and module details. Definitions of notations
used in the text are shown in the Table 1.

Table 1. Descriptions of notations used in the following parts.

Symbol Definition
X a kth-order tensor € Rh* /2%l
w a kth-order core tensor € RN */2%-% i1
Wi fa-+-jx—1 (j1,f20 ++ + jr—1)-th element of w
utm n-mode factor matrix € Rln*/n

n

H}"

Jju-th column vector of LU/

o) scoring function of the existence of hyperlinks
r relation embedding of hyperlink
Um embedding of entities
Xy tensor n-mode product
Zi (i) ir-th lateral slice matrix of TR origin tensor
Trace(-) matrix trace operator

concatenating operation for hidden layers
° vector outer product

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025) Page No. 5



3.1. Task Description

A directed hypergraph is an ordered pair H = (V, E), where V = {vy,...,7;} denotes a
set of entities and [ is the number of entities. E comprises a set of directed hyperlinks, formally:

E = {(h,t1), (ha,t2), ..., (hm,tm)} (1)

Each element in E can be divided into two components, where h (resp. t) serves as the
head (resp. tail), with the direction being from the head to the tail.

The directed hyperlink prediction aims to predict the missing hyperlinks, including
the existence and associated direction, based on the relevance of the given entities. Take
relation knowledge in Figure 1 as an instance. Entities in each relation build the V, and
their corresponding relation forms the directed hyperlinks E. Every sample in the dataset
will contain an uncertain number of substances. We have to determine whether they can
support a relation knowledge and which component each entity belongs to.

3.2. Framework

TF-DHP consists of a Tucker decomposition-based hypergraph link prediction model
and a BiLSTM-based direction prediction model to predict directed hyperlinks among
entities sets in a directed hypergraph. It is then optimized by a ranking objective in which
scores of existing hyperlinks are ranked higher than those of non-existing entity subsets and
scores of positive directions are higher than those of negative directions. The framework is
shown in Figure 2.

We generalize TuckER [15] to the high dimension and regard it as a scoring function.
We use the scoring function after obtaining the embedding vectors of every entity in an
entity set to evaluate whether the hyperlink exists or not. If the hyperlink does exist, we
divide the entities set into two groups based on the direction label of each entity and then
use the BILSTM model [17] to evaluate the direction between the groups which can be
defined as the direction of the hyperlink. Meanwhile, we also randomly sort the entities in
each group to increase training data according to the characteristic that the order of entities
in each group does not influence the direction.
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Figure 2. A sketch of TF-DHP directed hypergraph prediction model. The embedding of entity sets
to be predicted are fed into the Tucker-decomposition-based layer to calculate the score. The target of
model training is to make the score of existing hyperlinks larger than the score of entities set without
hyperlinks. Then, the embeddings of entities in the existing hyperlink are sent to the BILSTM layer to
calculate the direction score. The target of model training is to make the score in the positive direction
larger than the score in the negative direction.
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3.3. Tucker Decomposition-Based Hyperlink Prediction Module

To predict hyperlinks of the entity set, we propose a Tucker decomposition-based
scoring function and provide mathematical proof of its irrelevance with the order of inputs.

3.3.1. Tucker Decomposition-Based Scoring Function

Tucker decomposition is a tensor decomposition algorithm that decomposes higher-
order tensors into a core tensor and several factor matrices. The core tensor reflects the
degree of interaction between different factor matrices. The formal expression is as follows:

. I} 2 In
x:(ijxlu(l} qutz}, Xk—‘_[ u(k—lJ — Z E .

h=1p=1  jr1=1

(1), (2) (k—1)
Wi My Wy oty (2)

where X' € RI*2*->li1 denotes the original tensor, w € RN*2%-*Ji-1 denotes the
core tensor and [1/> - - [;_1 are much smaller than I1I5--- Iy 1 , k denotes the order of
X, U “}, s U =1 denotes the set of factor matrices, and the mathematical symbol x
denotes the tensor product along with the kth mode. The dimensions of the core tensor are
smaller than those of the original tensor in each order, so the core tensor can be regarded as
the dimensionality reduction in the original tensor.

Based on the Tucker decomposition of the representation tensor, we design the scor-
ing function to score each hyperlink. Specifically, if a hyperlink contains m entities, we

first select the corresponding entity and relation embeddings. Then, a parameter tensor
is designed as the core tensor containing learnable parameters shared by entities and
relations [15]. Our goal is to optimize these parameters to fully exploit the relevance among
entities and the associated relations based on their embeddings. The scoring function can
be expressed as below:

P(r,v1,02,.. ., Um) =W X17 X201 X3 ... Xmt1 Oy (3)

where m changes with the number of entities contained in the hyperlink, and the order of
the tensor Z is equal to one plus the number of entities. r denotes the relation embedding of
the hyperlink to be predicted, and vy, vs, . . ., v, are the embeddings of entities contained by
the hyperlink. Since the tensor product of a tensor with a vector will change the dimension
of its corresponding order to 1, we can repeat the process m + 1 times to acquire a real
number. This real number is further regarded as the score of this hyperlink.

As every entity in the hyperlink and the relation embedding are computed simultane-
ously, Equation (3) reduces information loss. Nevertheless, the computational complex-
ity becomes enormous with the increase in the number of entities because of the inner
computation of the high-order tensor product. To address the issue, we use the TR [16]
decomposition algorithm. It represents a high-order tensor by a sequence of third-order
tensors multiplied circularly, mathematically:

d
T(i1,i2,...,1n) = Trace{Z,(i1)Za(in) - - - Zu(in) } = Tmce{l__[ Zi(i)} (4)
k=1
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where T denotes the original tensor of size ny x np x - -+ x ny, Z; denotes a set of third-
order tensors whose dimensions are ry X ny X ri41, i denotes ir-th layer matrix in the
second-order of the tensor, and Tr denotes the trace of the product of matrices. The tensor
ring decomposition makes the third dimension of the last decomposed tensor the same as
the first dimension of the first decomposed tensor. The advantage is that when we make a
circular shifting of the decomposed tensor, the results will not be changed because of the
matrix trace operation. Tensor ring decomposition dramatically reduces the computational
load of the model when the tensor order is large by decomposing higher-order tensors into
products of third-order tensors.

The computational complexity grows sharply when the order of the core tensor grows,
so we use the TR decomposition on the core tensor to decompose the high-order tensor into
several three-order tensors multiplied circularly. Based on the definition of TR decomposi-
tion, every single parameter in the core tensor can be computed by the trace of the matrices
product. It can be expressed in the tensor form [16], given by:

oidn
= Z Z](ixl,rxg)oZZ(az,a'g,) ol -oZd(:xd,af]) (5)

I:Y] peaepllyy =1

where Z;(n;, &, 1) denotes the vector corresponding to the index in the tensor and the
symbol o denotes the outer product of vectors, ry,. .., r, correspond to the dimension of
the first and 3rd order of the tensor. We use the simplified form Z = Tr(Zy, 25, ..., Z,)
to represent the decomposition of the core tensor. Combining with Equation (3), we can
rewrite the scoring function as:

¢(r,v1,v2,...,0n) = Trace(Zy,2Zy,...,Z,) X17 X201 X3+ Xp41Un (6)

This scoring function not only considers all the entities and relation information
contained in a hyperlink but also controls the model complexity within an acceptable range.
As shown in Table 2, the scoring function above has fewer parameters than NaLP and is not
easy to overfit in the datasets which are not large enough, concretely shown in Figure 3.

Table 2. Scoring functions of several models for undirected hypergraph link prediction tasks, with
the significant terms of their model complexity. n, and 1, are the number of entities and relations,
while d; and d, are the dimensionalities of entity and relation embeddings respectively. n is the
number of entities in a hyperlink and d,,,4, is the maximum size of TR latent tensors. maxmin is the
element-wise difference of maximum and the minimum values of the vectors.

Model Scoring Function Model Complexity
RAE [ aj(e;, — wie,-}.w,-,) + 7| O(#ede + nyd,)
NaLP FCN,(min(FCNy(Conv([W;, [ei,; iy r€i,]])))) O(npd, + nn,d,)
NHP-U-mean (LW Lo +8) O(ned.)
NHP-U-maxmin a(W- muxmin{h.gg}v@ +b) O(Lecp 3 |me| - (Jne] —1))
TF-DHP Trace(Z1,Zs, ..., Zy) X17 X201 X3+ X410y O(nede + npd, + nd‘f,m)
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Figure 3. MRR results on NaLP and TF-DHP with training epoch growing, evaluated on WikiPeople.

This model is based on the scoring function of Tucker decomposition, and because
the model needs to determine the order of the core tensor, the model cannot process the
hyperlinks with different number of nodes in one time. For datasets with such hyperlinks,
we need to classify them before predicting, which increases the workload to a certain extent.

As the order of the core tensors increases, the number of third-order tensors required
by TR decomposition increases accordingly, which will increase the amount of computation
to a certain extent. The machine used in this paper can deal with the prediction task of
hyperlinks with up to six nodes.

3.3.2. Proof of Sequence Independence

As illustrated above, the Tucker decomposition processes the inputs sequentially, while
the order of entities contained in one hyperlink does not influence the determination,which
requires the invariance property of our scoring function. We prove that the order of entities’
and relations” embeddings in the tensor product makes no difference to the result. We first
rewrite the scoring function in the tensor-wise form:

e o
P(r, 01,02, ..., 0n) = Z Zy(ay,02) 00 Zg(og, 01) X117 Xa 01 X3+ X1 (7)
&1 ,tn=1

In the mentioned TR decomposition, the matrix trace operation and the same dimen-
sions of the input and output ensure the invariance of circular shifting. When it comes
to the hypergraph, the dimensions of entities and relations are set to a fixed value, which
makes the invariance not only in circular shifting but also in order changing between every
single entity. It means the change in the order of the product does not change the result. So,
we just need to prove that the order of the tensor product in the Tucker decomposition has
no effect on the result. The element-wise form of the tensor product is as follows:

Xiyiy-iy = (@ X1 u'v X2 u®@ ... Xn (H))fﬂz
I1 2 In {8)

Z Z th}z j" T]h 7(22}1_ (:J'JJ

J1=1j2=1 fn=1
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On the right-hand side of the equation, if we regard the indices jy, . . ., j, as a set of integer-

independent variables and their variation range is from 1 to [y, ..., [, ( u%{ ’ 1.{;[;-)2, S ”:(:j;:;}
can be regarded as the functions of these independent variables, the meaning of the
function value is the value of the element at the corresponding position in the entity
embedding vector indexed by the independent variable. We use f1(j1), f2(j2), ..., fu(jn)
(in Equation (9)) to represent the functions. The expression wj, j,...;, can be regarded as a
multivariate function whose form is g(ji, j2,- . ., jx), and the value of the function means
the parameter on the corresponding position of the core tensor.

Then, we find that if we make the independent variables take the value of all real
numbers from 1 to |, instead of being integers, we can transform Equation (8) into a

multiple definite integral:

f[[ o ,/D 8(r j2r- ) (1) f2(G2) - - - fuljn)dadjz - - - djn ©)

The integral domain D of this multiple integrals is an n-order tensor that has the same
size as the core tensor. Changing the order of independent variables in g(j1, j2, ..., ju) does
not change the corresponding parameter; thus, the order of ji, . .., j; has no influence of

the function g(j1, j2, - - -, ju) fr(j1) f2(j2) -+ * fu(jn)-
Since the functions f(j;), ..., fu(jx) are all unary function, the integral can be rewritten as:

I+ st ot | G [ i« [ i @0

For the multiple definite integrals [[[ - [5 &(ji, 2. - .., ju)dj1djz - - - dju, the limit of
integration for each order are finite constants, and the order of jy, . .., j, makes no difference
to the function, so changing the order of integration does not change the value of the definite
integral. Therefore, the whole integral has the invariance property. Because Equation (8) is
a special case of Equation (9), the scoring function is proven to have the invariance property.

3.4. BiLSTM-Based Direction Prediction Module

In the directed hyperlink prediction problem, the embedding of each entity further
determines the existence of a hyperlink and its direction. However, different from the exis-

tence prediction, the direction of a hyperlink emphasizes the order of entities. For example,

Capital O
in the related knowledge “WDC, Washington D.C ~ 4%/ Us, The United States”, the

direction comes from WDC and Washington D.C (also known as head entities) to USA and
The United States (also known as tail entities). Once a substance is placed in the wrong
component, the reaction might not even exist. In addition, the interaction between two
components, e.g., conservation of materials, indicates that the model cannot individually
determine the components. Therefore, we apply BiLSTM in our module to encode all
entities sequentially to achieve the information passing both forward and backward.

As shown in the Figure 4 The BiLSTM consists of several LSTM hidden layers. These
hidden layers are divided into two groups that meet end-to-end in opposite directions. The
entities’ embeddings in the hyperlink are calculated in the hidden layer of the corresponding
position one by one. Meanwhile, the state of the previous hidden layer is calculated in the
next hidden layer together with the embedding of the entities fed into the corresponding
layer. After all hidden layers have been calculated, embedding containing all sequential
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information is generated.The same process occurs in the backward hidden layer group,
which means we can obtain two embeddings of the hyperlink. We concatenate them into
one vector and then send it to a Softmax layer to obtain the direction score. The specific
expression of the process is as follows:

T = LSTM(hyoq, we) (11)

hi = LSTM(it, 3, w;) (12)
=T @ (13)
p = Softmax(hy) (14)

o -
where h; denotes the concatenated embedding of the sequential representation, /iy and h;
are calculated by two hidden layers in opposite directions, w; denotes the embedding for
the tth entity, and the symbol ¢ means the concatenating operation.

Vertex embedding

. Washington, : The United
WDC gy —_— USA s

\ X [ :ni\
LSTM +— LSTM +——— LSTM +— LSTM

BILSTM layer

0
:

Softmax
LSTM — LSTM ——— LSTM — LSTM

] |

W Washington, : The United Hyperedge
bD.C — usa States representation

Lol of of ot 3

Vertex embedding

Figure 4. A sketch of the BiLSTM-based hyperlink direction prediction model, the entities in the
directed hyperlink are divided into head and tail parts according to the label and are input into
the BiLSTM layer in a specific order. The hyperlink representation is obtained by splicing the
representation vectors obtained from each direction of the BiLSTM layer. Finally, the direction score
is obtained through a Softmax layer.

As the inner order of entities in one component does not change the elements, it also has

Capital O
no effect on the direction, e.g., “WDC , Washington D.C ~""4%/ ys, The United States” and

" ) Capital Of ) i .
Washington D.C,WDC '— ~ The United States , USA” are the same relation knowl-
edge. However, they might be regarded as two different instances when fed into BiILSTM

concentrating only on the specific sequence. In other words, if “WDC , Washington D.C
Capital Of

USA, The United States” is annotated as the positive instance, BiLSTM can-

Capital O
not naturally and directly determine the correctness of “Washington D.C, WDC At f

The United States, USA” without other guidance. Therefore, we enlighten BiLSTM to fo-
cus on the order of two components and ignore the order of entities in the same component
through a data shuffling strategy. Specifically, we maintain the order of two components
and randomly shuffle the entities in the same component. The number of generated in-

stances relies on how many entities every component owns. For “WDC , Washington D.C

Capital O
e f USA, The United States”, there will be 2 x 2 = 4 different sequences. We then
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give all generated instances a correct label to enforce BiLSTM to exploit features of the
direction. The strategy can enlarge the data scale without introducing external manual
efforts, which also contributes to tackling the low-data regime problem.

3.5. Training

TF-DHP is a pipeline model, which means that we predict the hyperlink’s existence
in the first stage and judge the direction of the hyperlink in the second stage. If we use
the data of undirected hypergraphs to train the first stage of the model separately, we can
obtain a model that can perform link prediction of undirected hypergraphs. If the whole
model is trained on the data of the directed hypergraph, the trained model can have the
ability to predict directed hyperlinks.

The TF-DHP is trained in two stages, which keeps the same pace with the framework.
The training goal of the first stage is to provide the existing hyperlink with a higher score
while decreasing the score of entities that cannot comprise a hyperlink.With the initial
embeddings of entities and their labels as input, we use the Tucker decomposition-based
scoring function to obtain two kinds of the score, and a binary cross-entropy loss function
is designed to maximize their gap.

After the first stage of the model is trained, we acquire the updated core tensor and
embeddings and use these embeddings to initialize the second stage of the model. Two
kinds of scores are calculated in the BiLSTM. One is the score of the correct direction, and
the other is the score of the wrong direction. The specific expression of the loss function is
as follows: __ __

L = fuean(log(1 + fmeonan)) =004, )y (15)

where f,cqn denotes an average function, o denotes the sigmoid function, ¢, denotes the
score of each negative hyperlink, and ¢, denotes the score of each positive hyperlink.
Finally, the BiLSTM-based model updates the model parameters and embeddings of entities
and relations based on the loss gradients.

4. Experiment

This section reports the experiments.

4.1. Experimental Setup

We detail the adopted datasets, evaluation metrics, parameters, and baselines.

4.1.1. Datasets

We use two public relational datasets in our experiment for undirected hypergraph link
prediction and one open KB canonicalized dataset for directed hypergraph link prediction.
We brief these datasets below.

*  WikiPeople [11]: WikiPeople is a public n-ary relational dataset concerning entities
of type human extracted from Wikidata. WikiPeople is an incomplete hypergraph
with many hyperlinks missing [11]. In WikiPeople, each set of entities has one kind of
relationship. We use this dataset to train the undirected hyperlink prediction model.

e JF17K [8]: JF17K is a public n-ary relational dataset that has high-quality facts. It is
filtered from Freebase while having multi-fold relational structures preserved. The
same as WikiPeople, each set of entities has one kind of relationship, and we use this
dataset to train the undirected hyperlink prediction model.
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* ReVerb15K [9,28]: ReVerb45K is an open KB canonicalization dataset [28], and it is
constructed by intersecting information from ReVerb Open KB [29], Freebase entity
linking information from [30], and Clueweb09 corpus [31]. In triples of the original
dataset, there may be different subjects or objects having the same meaning. Based on
the Freebase entity linking information, we cluster the synonyms of the subjects or ob-
jects in one set, and use each cluster to represent the new subject or object. In this way,

a canonicalized directed hypergraph dataset is obtained. Since it contains about 15 K
entities, we call it ReVerb15K. The treated subject entities represent head hyperlinks,

and the treated object entities represent the corresponding tails; the direction is from
head to tail.

The specific size of datasets are shown in the Table 3.

Table 3. Statistics of the hypergraph datasets used in the experiments.

Datasets WikiPeople JF17K ReVerb15K
Direction undirected undirected directed
Number of Entities 12,270 11,541 14,798
Number of Relations 66 104 382

4.1.2. Metrics And Parameters

We test the effectiveness of the model in two parts. One is the Tucker-decomposition-
based model for predicting the undirected hyperlinks, the other is the whole framework
for predicting the directed hyperlinks. The total hyperlinks in datasets are divided into
three parts: 20% for training, 10% for validation, and 70% for testing. We evaluate the
link prediction performance via two standard metrics: MRR and Hits@k (k is top ranking).
MRR is the mean of the inverse of rankings over all testing facts, while Hits@k measures the
proportion of top k rankings. The aim of the training is to achieve high MRR and Hits@k.

The reported results are given for the best set of hyper-parameters evaluated on the
validation set for each model, after grid search on the following values: embedding size
e {15,20,25,30,35}, learning rate € {1,0.6,0.06,0.006}, and TR-ranks € {5, 10,20, 30,40},
with TR-ranks the size of the tensor decomposed by TR decomposition.

4.1.3. Baselines

We compare TF-DHP with the following n-ary hyperlink prediction baselines:

. RAE [8]: RAE is a translational distance model which considers the possibility of
common occurrence between entities in n-order relations, establishes a correlation
model through MLP, and reflects it in the scoring function.

. NaLP [11]: NaLP is a neural network model that achieves the state-of-the-art n-ary
hypergraph link prediction performance.

. HGNN [12]: This is a general hypergraph neural network framework for data represen-
tation learning based on hypergraph convolution operation, which can incorporate
multi-modal data and complicated data correlations. We use maxmin as a scoring
layer and a direction scoring layer [9] for directed hyperlink prediction with HGNN.

. HyperGCN [13]: This is a new method of training a GCN on hypergraph using tools
from spectral theory of hypergraphs. Since it is not directly proposed for hyperlink
prediction, we use the same scoring layers as used on HGNN.
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*  NHP-U-mean and NHP-U-maxmin [9]: These two methods are both based on the GCN
layer. NHP-U-mean uses mean as the scoring layer while NHP-U-maxmin uses maxmin
as the scoring layer to predict hyperlinks. These two methods are proposed for
undirected hyperlink prediction.

¢ NHP-D-mean and NHP-D-maxmin [9]: These two methods use a direction scoring layer
on NHP-U-mean and NHP-U-maxmin to predict directed hyperlinks.

4.2. Experiment on Undirected Hypergraphs

Tables 4 and 5 show the undirected hyperlink prediction results on two datasets. The
highest scores are set in bold. As shown in the tables, we can find out that our proposed
TF-DHP can achieve optimal results under various measurement standards, consistently.
For both datasets, graph neural networks NHP combining the mean or maxmin scoring
functions cannot have comparable performances in link prediction problems. For example,
on WikiPeople, compared with our proposed model, TF-DHP, the MRR of the first four
methods is only about a third, and Hits@10 is about a half. The large improvement of
TF-DHP can strongly confirm that scoring functions such as mean or maxmin largely ignore
the influence of the representation of each entity in the hyperlink on the predicted results,
which also reflects the advantage of Tucker-decomposition-based model taking every entity
embedding into the computation.

Table 4. Undirected hyperlink prediction results on WikiPeople dataset.

Model MRR Hits@10 Hits@3 Hits@1
HGNN 0.132 0.285 0.152 0.117
HyperGCN 0.137 0.289 0.158 0.115
NHP-U-mean 0.122 0.283 0.147 0.119
NHP-U-maxmin 0.143 0.302 0.144 0.139
RAE 0.153 0.273 0.152 0.146
NalLP 0.332 0.537 0.403 0.334
TF-DHP 0.362 0.574 0.440 0.368

Table 5. Undirected hyperlink prediction results on JF15K dataset.

Model MRR Hits@10 Hits@3 Hits@1
HGNN 0.649 0.722 0.640 0.526
HyperGCN 0.654 0.743 0.652 0.538
NHP-U-mean 0.632 0.710 0.639 0.509
NHP-U-maxmin 0.686 0.783 0.670 0.573
RAE 0.707 0.837 0.751 0.629
NaLP 0.714 0.805 0.737 0.673
TF-DHP 0.751 0.873 0.786 0.686
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As for the translational distance model RAE, although RAE achieves slightly better
results than the four methods, its results are still unsatisfying. On WikiPeople, TF-DHP
improves MRR by 0.21 and Hits@1 by 0.15, which is a considerable improvement. The
main reason for the unsatisfying performance of RAE is the restriction on relations of the
translational distance model. Such restriction does not exist in the Tucker-decomposition-
based model. Tucker decomposition can accurately represent any ground truth over a set
of entities and relations by its full expressiveness [15].

The performance of NaLP is much better than the aforementioned methods due to
the enormous amount of model parameters. It uses a neural network to greatly reduce
the restriction on relations existing in the translational distance model. However, a large
number of parameters makes it easy to over-fit, especially when training datasets are
not big enough. According to the network structure and scoring function of NaLP, the
model complexity of NaLP is O(n.d, + nn.d,), with n, and d, representing the number and
dimension of entities, respectively. n is the number of entities in one relation. n, and d,
stand for the number and the dimension of relations, respectively. However, the model
complexity of the first stage of TF-DHP is only O(n.d, + n.d, + ndﬁm}, where d,y,y is the
maximum dimension of the third-order tensors in TR decomposition. Since the number of
relations is much larger than the dimension of the decomposed tensor in hypergraphs, the
model complexity of NaLP is apparently larger than TF-DHP. As shown in Figure 3, with
the training epoch growing, NaLP requires more training epochs than TF-DHP to achieve
the optimal result. Moreover, because too many NalLP parameters lead to an over-fitting
issue, the results decrease when the epoch is larger than 100. However, due to relatively
few parameters, the results of TF-DHP are relatively stable after reaching the optimal result
during training.

4.3. Experiment on Directed Hypergraphs

Table 6 shows the results of several directed hyperlink prediction models. The highest
scores are set in bold. To the best of our knowledge, there are few models dealing with
the hyperlink prediction problem in directed hypergraphs. As shown in Table 6, TF-DHP
obtains considerable improvement compared with other methods. For example, for the
best baseline NHP-D-maxmin, TF-DHP improves MRR by 0.056 and Hits@10 by 0.026.

Table 6. Directed hyperlink prediction results of Reverb15K dataset.

Model MRR Hits@10 Hits@3 Hits@1
HGNN 0.276 0.422 0.336 0.226
HyperGCN 0.316 0.443 0.347 0.238
NHP-D-mean 0.288 0.435 0.352 0.219
NHP-D-maxmin 0.442 0.560 0.438 0.348
TF-DHP 0.498 0.586 0.474 0.353
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We believe that there are two main reasons for the better prediction performance of
TF-DHP on directed hypergraphs. First, when testing the directed hypergraph prediction
model, we put the weighted average of scores computed in two stages of the model as the
final score, which means we regard an entity set as positive only if there exists a directed
hyperlink among the entities set with the direction also being correct. So, the accuracy
of the first stage of the model will inevitably affect the performance of the whole model.
Second, the NHP-D-maxmin and other methods in Table 6 use the average value of entities’
embedding vectors to represent the embedding of the hyperlink and consider the product
of embedding vectors of liead and tail parts of the hyperlink as a scoring function. As
mentioned above, these methods ignore the influence of each entity embedding on the
direction of the hyperlink and the relationship between an entity and its adjacent entities.
The improvement of experimental results proves that considering the representation infor-
mation of each entity separately and the information of the adjacent entities (from forward
to backward) can improve the accuracy of directed hypergraph prediction.

4.4. Parameter Analysis

Embedding size is a significant factor in hyperlink prediction models, determining the
performance of the model to a large extent. Hence, we will analyze the results obtained by
the model in different embedding sizes to investigate its impact.

First, according to Figure 5a, TF-DHP outperforms other methods on each embed-
ding size. The MRR of TF-DHP increases sharply with the early stage of increasing the
embedding size and becomes smooth after the embedding size increases to 15. The MRR
of NaLP is almost identical to TF-DHP’s from the start; however, due to a large number of
parameters, it cannot reamain smooth like TF-DHP when the embedding size increases.
After the embedding size increases to a certain extent, NaLP’s MRR will decrease. For other
methods, the change in embedding size has less influence on the experimental results due
to their smaller number of parameters.

Figure 5b shows the impacts of embedding size on directed hyperlink prediction. The
same as undirected hyperlink prediction, TF-DHP always outperforms other methods. As
BiLSTM is added, the optimal embedding size of the model increases to 25, after which
the increase in MRR becomes smooth. As for other methods, the addition of the direction
scoring function also increases the optimal number of parameters and shares the similar
tendency as TF-DHP.

It proves the stability of TF-DHP on the choice of the dimension size. In addition
the reasonable amount of parameters of TF-DHP allows it to be more stable, as other
models’ performances may decrease with the increasing dimensions, suffering from the
over-fitting issue.
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Figure 5. MRR over different embedding sizes of undirected hyperlink prediction models and
directed hyperlink prediction models, evaluated on WikiPeople and Reverb15k: (a) undirected

hyperlink prediction models; (b) directed hyperlink prediction models.

4.5. Approximate Training Time Comparison

On the two undirected datasets WikiPeople and JF15K, TF-DHP takes around 45 min
of training time, while NaLP and RAE take around 3 h and 1 h, respectively. On the directed
dataset Reverb15K, TF-DHP takes around 1 h of training time, while NHP-D-maxmin and
NHP-D-mean take around 15 min each due to their oversimplified scoring function. All
were run on a GeForce GTX 1080 super GPU machine.

4.6. Ablation Study

Since experiments on the directed hypergraph dataset have proved the effectiveness of
the BiLSTM model, we designed an ablation study to prove the influence of TR decomposi-
tion in Tucker decomposition. We designed a variant on WikiPeople of TF-DHP which does
not use TR decomposition on Tucker decomposition, and we call it n-Tucker. As shown in
Figure 6, without TR decomposition, the computational complexity of the model greatly
increases, which will result in an over-fitting issue. Similar but better than NaLP, n-Tucker
reaches the optimal value of MRR and then gradually decreases due to the over-fitting issue.
This kind of experiment not only proves the superiority of the Tucker decomposition-based
model but also proves the necessity of the TR decomposition.
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Figure 6. MRR under different training epochs of undirected hyperlink prediction models. Evaluated
on WikiPeople.

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025) Page No. 17



5. Conclusions and Future Work

In this paper, we introduce TF-DHP, a novel model for hyperlink prediction for both
undirected and directed hypergraphs. We use a tensor-decomposition-based method
to handle the undirected part and add a BiLSTM model to predict the direction of the
hyperlink. Our model TF-DHP is a pipelined model, which is flexible to deal with not only
directed hypergraphs but also undirected hypergraphs. The experimental results verify the
advantages of TF-DHP in both settings across multiple datasets.

In the future, we plan to further look into heterogeneous hypergraphs where there are
multiple types of high-order relations, such as inclusion relations and produce relations,
and to see how directed hypergraphs can be used on reaction prediction in chemical or
biological domains.
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ABSTRACT

Extracting hierarchical structure in graph data is becoming an important problem in fields such as
natural language processing and developmental biology. Hierarchical structures can be extracted by
embedding methods in non-Euclidean spaces, such as Poincaré embedding and Lorentz embedding,
and it is now possible to learn efficient embedding by taking advantage of the structure of these
spaces. In this study, we propose embedding into another type of metric space called a metric cone by
learning an only one-dimensional coordinate variable added to the original vector space or a pre-
trained embedding space. This allows for the extraction of hierarchical information while
maintaining the properties of the pre-trained embedding. The metric cone is a one-dimensional
extension of the original metric space and has the advantage that the curvature of the space can be
easily adjusted by a parameter even when the coordinates of the original space are fixed. Through an
extensive empirical evaluation we have corroborated the effectiveness of the proposed cone
embedding model. In the case of randomly generated trees, cone embedding demonstrated superior
performance in extracting hierarchical structures compared to existing techniques, particularly in
high-dimensional settings. For WordNet embeddings, cone embedding exhibited a noteworthy
correlation between the extracted hierarchical structures and human evaluation outcomes.

\Keywords: graph embedding, non-Euclidean space; WordNet )

Introduction

In recent years, machine learning methods for graph data have been an important topic, because graphs
are suitable for representing the relation between multiple objects, such as social networks [1,2], links
embedded in web pages [3], cells’ interactions [4], and more. In particular, methods for extracting
hierarchical structures from graph data are needed in fields such as cell engineering and natural language
processing. Considering the structure of knowledge behind language is important for natural language
processing tasks in general. The hierarchical structure of words provides useful information for
improving the accuracy of question answering and semantic search [5,6]. In the field of developmental
biology, various methods have been proposed for analyzing single-cell RN A sequence (scRNAseq) data
to reveal the process by which an undeveloped cell develops into a cell with specific features [7]. Since
scRNAseq data itself does not have a hierarchical structure, the hierarchical structure must be extracted
from the data or from a graph constructed using the data. The methodforextracting hierarchical
structures must have some scalability when it is applied to data sets with a large size and high dimensions
such as scRNAseq data. The most common method for extracting the structure of a graph is to learn the

embedding vector of nodes. Methods for learning node embeddings can be classified into two types: (1)

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025) Page No. 22



semi-supervised learning based on GNN [8—10] and (2) unsupervised learning [11] (based on random-
walk [12], matrix factorization [13], and probabilistic methods [14], etc.). Graph neural networks
(GNNps) are a type of neural network designed to operate on graph-structured data, allowing them to
model complex relationships between entities, and capture both local and global information in the
graph. This is achieved through the use of message passing mechanisms, which enable nodes to
exchange information with their neighbors and aggregate that information into a new representation.
Although it is possible to solve tasks that require hierarchical structure information using only GNNss,
there are many advantages to using embedded representations, such as the expected reduction in
computational complexity if the hierarchical structure is extracted in advance for embedding. On the
other hand, the graph embedding converts each graph into a vector representing features of the graph and
such vector representation can be tuned for solving individual tasks, which reduces the overall
computational complexity. In this paper, we propose a novel graph embedding method for extracting its
hierarchical structure from an undirected graph. There have been many graph embedding methods for
extracting the hierarchical structure of a graph utilizing a hyperbolic space [15,16], such as Poincaré
embedding [17-20], Lorentz embedding [21], and embedding in a hyperbolic entailment cone [22].
These methods use similar loss functions but with different metrics of the space in which graphs are
embedded. Non-Euclidean spaces with non-zero curvature can learn embedding efficiently by adjusting
their curvature to the hierarchically structured data. In particular, a Poincaré ball is a space of a negative
constant curvature, which is characterized by the fact that the length of the circumference exponentially
increases in the order of the radius when centered at the origin. An efficient embedding of tree-structured
data utilizing this feature has also been proposed [23]. The Lorentz model of a hyperbolic space can
explicitly describe geodesics and the accuracy of distance calculation becomes stable in the
optimization [21]. The metric cone used as the embedding space in this study is a space defined as a one-
dimensional extension of a base metric space. The base metric space can be not only a vector space but
for any geodesic metric space such as Riemannian manifolds and metric graphs. The dimensions of the
metric cone are only one dimension higher than the original space. It is known that the curvature of this
space can be varied and a method of changing the structure of the data space for analysis has also been
proposed [24]. The definition and details of the metric cone will be explained in Section 2.3. In this
paper, we propose the use of the metric cone as an embedding method for hierarchical graphs. Thanks to
the properties of metric cones, the proposed method has the following five advantageous features
compared to existing methods. First, it optimizes an only one-dimensional coordinate corresponding to
“the height of the metric cone” (a one-dimensional parameter added to the base space) as an indicator of
hierarchy. Therefore, a significant reduction in computational complexity can be expected compared to
optimizing all variables. Secondly, it can be applied to any pre-trained embeddings using a geodesic
metric space including the Poincaré ball and the Lorentz model. When extracting hierarchical

information for another purpose from an embedding already learned by other embedding methods, the
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extraction of hierarchical structure can be accomplished by learning only one additional coordinate
variable. Due to this scalability, the proposed method can be combined with various existing embedding
methods to achieve hierarchical extraction with a variety of features. Thirdly, the curvature of
embedding space varies monotonically with , a parameter in the distance function of embedding space,
and therefore can be tuned by it. As explained in Section 3.2, parameter corresponds to the generatrix of
the metric cone and this fact provides an intuitive explanation for the monotonically decreasing
curvature of the embedding space as the parameter is increased; while there have been some methods for
tuning the curvature of some graph embedding spaces [25,26], the metric cone allows the curvature of
the space to be tuned by changing while keeping the coordinates of the original space fixed. Therefore,
when adjusting the curvature of the embedding space to match the training data, only one-dimensional
parameters need to be learned. As shown in the experiments, it is suitable to embed data with a smaller
curvature in higher dimensions. Thus, it is important to adjust curvature depending on the dimension of
the destination space and the structure of the data to be embedded. Fourthly, the uniqueness of the
embedding is guaranteed when optimizing the loss function. When performing graph embedding in a
space where isometric transformations exist, there is the problem of unstable learning due to the
existence of multiple embeddings such that the distance from the origin of each point can be different,
even though the distances between all points are identical. Usually, the distance from the origin is used as
the height of the hierarchy, resulting in multiple solutions with different hierarchical structures. On the
other hand, since there is no isometric mapping for a sufficiently large number of points in a metric cone
as proven in Section 3.1, it is theoretically guaranteed that the embedding is unique and the learning is
stable. Lastly, we can reduce the amount of computation for the parts other than preprocessing,
regardless of the dimension. In addition, because the embedding in the original Euclidean space is
preserved, it can be used as an input to the neural network and can be easily applied to other tasks. The
subsequent sections of this paper are organized as follows. First, in Section 2, wepropose the method of
graph embedding in a metric cone, with the introduction of (1) graph embedding in non-Euclidean
spaces, and (2) the definition and properties of cones. In Section 3, theoretical arguments ensure the
validity of the proposed method. First, weprove that the identifiability of the graph embedding, which
does not hold for existing methods, holds for the cone embedding. Next, we show that the curvature of
the metric cone varies monotonically with the parameter . In Section 4, we present experimental results
using some real and artificial graph data, followed by a conclusion and future perspectives in Section 5.
2.Methods

2.1. Problem Settings

From this point onward, the set of edges in an undirected graph G is denoted by E, the set of vertices by
V, and the embedded space by X. Then, our target is finding an embedding : V Xandafunctionh : X
Rsuchthath( (v))representsthehierarchy of v V.Function h canusually be expressed simply as a

coordinate value of X. Note that, since G is an undirected graph, the problem is ill-posed if there are no
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assumptions about the relationship between the structure of the graph and the hierarchy of vertices. As
in existing works, we implicitly assume that the branching of the graph is like that of a rooted tree, i.e.,
the higher the hierarchy, the smaller the number of vertices, and the lower the hierarchy, the more
vertices.
2.2. Graph Embedding in Non-Euclidean Spaces

Out learning steps are similar to Poincaré embedding. We learn the embedding of a graph G
bymaximizing the following objective function:

L= E ]ngpf exp(—d(uv)) , (1)

(um)eE CNf[u]EKP{—d{H,tJ’j}

where N“(u) : {¢' € V|(u,v") # E} denotes the set of points not adjacent to node u
(including u itself) and d denotes the distance function of the embedded space. Here the
embedded space becomes a Poincaré sphere for the Poincaré embedding and a metric cone
for the proposed method. This objective function is a negative sampling approximation of
a model in which the similarity is —1 times the distance and the probability of the existence
of each edge is represented by a SoftMax function on the similarity.

The maximization of the objective function is done by stochastic gradient descent on
Riemannian manifolds (Riemannian 5GD). The stochastic gradient descent over Euclidean
space updates the parameters as follows:

w4 u—nyWVyl(u), (2)

where 1 is the learning rate. However, in non-Euclidean, the sum of vectors is not defined
and V,L({u) is the point of the tangent space T, X of u; hence, SGD cannot be applied.
Therefore, we update the parameters by using an exponential map instead of the sum:

i 4 exp, (—yViL(u)). (3)

With the metric tensor of the embedding space as ¢,(u € V), the gradient on the
Riemannian manifold VL(u) is the scaled gradient in Euclidean space:

VaL(u) = g, ViL(u). (4)

2.3.The Metric Cone

The metric cone is similar to ordinary cones (e.g., circle cones) in the sense that it is defined as a
collection of line segments connecting an apex point to a given set. However, the metric cone has a
notable property such that every point in the original set is embedded

at an equal distance from the apex point and this is a desirable property for hierarchical structure
extraction. The metric cone has been studied as an analogy to the length metric spaces of the tangent
cone for differential manifolds with singularities. Length metric space is a metric space where the
distance between any two points is equal to the shortest curve length connecting them. Length metric
space includes Euclidean spaces, normed vector spaces, manifolds (e.g., Poincaré ball; sphere), metric

graphs, and many other metric spaces. Assume the original space Z is a length metric space, then the
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metric cone generated by Zis X :=Z[0,1]/Z 0 with a distance function determined as follows:

da((%,5), ()
= ﬁ\/fz + 52 — 2ts cos(mmin({dz(x,y)/B,1)) (5)

where f > 0 is a hyperparameter corresponding to the length of the conical generatrix.
Note that the metric cone itself also becomes a length metric space and it embeds the
original space (i.e., the space is one dimension larger than the original space). The distance
in the metric cone corresponds to the length of the shortest curve on the circle section (blue
line segment(s) in the right two subfigures in Figure 1) whose bottom circumference is the
distance of the original space Z and whose radius is 5.

o . _
R2 0 (z,1) 1)
£y ity ,.-" (2,3) (7, tj-\ ..
L || N

K J

ST S ' , > x\xh p _1 j,”
e gt

Figure 1. The left figure depicts a conceptual image of an original space and its metric cone. A circle
section to compute the distance in the metric cone is depicted in the middle figure (when the apex
angle < ) and the right figure (when the apex angle = ).

When the curvature is measured in the sense of CAT(k) property, a curvature measure
for general length metric spaces, the curvature value k can be controlled by . Other
properties of the metric cone are examined in [27,28]. Because the metric cone can change
the curvature of the space by changing parameter p, its usefulness has been reported in an
analysis using the structure of the data space [24].

The metric § of a metric cone is obtained by calculating the two-time derivative of the
distance as follows (see Appendix A for more details):

= sl + 0
§(xs) =( o g ) (6)

where g, represents the metric of Z at x. Combining this metric and the argument in
Section 3.1, the algorithm of cone embedding can be described as Algorithm 1.

Algorithm 1 Learn the cone embedding {{u,s)}

Input: graph G = (V,E), cone’s hyperparameter £ , learning rate 1,
and the pre-trained embedding {x} in original space Z
Output: the cone embedding [{u,s))
1: calculate the distance matrix D = (d;;), dij = dz{x;, xj)
2: minimize the softmax loss function:
(calculate efficiently by referencing the distance matrix [7)
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L= E log

: . _ (7)
([at8), (0, t))eE (L[gf_ff]EN:[[“rs;,] ExP{—ﬂrﬁ““r 5), {13';: If”})

via Riemannian stochastic gradient descent:

(x,5) ¢ proj((x,5) = ng "' VL)

The loss function (7) is defined to be smaller if the distance between nodes sharing
an edge becomes smaller (by the numerator in the log) and the distance between nodes
without an edge becomes larger (by the denominator in the log). Note that the distance for
a metric cone is used here. Computation of the denominator can be reduced by random
sampling of nodes for which no edges exist. Furthermore, the projection normalizes the
embedding along the gradient so that it does not jump out of the metric cone when it is
updated.

Instead of the exponential map of the metric cone, we use the first-order approximation
using proj(x,s):

{x,5) if e<s<1—g
proj(x,s) = 4 (x,1—¢) if s>1—g, (8)
(x,€) if 5 < E.

2.4. Score Function of Hierarchy

The Poincaré embedding defines an index in [17], which is aimed to be an indicator of
the hierarchical structure and depends on the distance from the origin:

score(u, v) = —a(||v|| — ||u||)d{u, v) (9)
This score function is penalized by the part after a, so, if v is closer to the origin than u,
then it is easier to obtain larger values. In other words, v is higher in the hierarchy than u

(i.e., “u is a v"” relationship holds). However, it is not appropriate to use this indicator for
the Poincaré embedding. This model learns the embedding by maximizing (1), where

- |lx — ylI? )
dix,y) := arcnsh(l + A Pa-TvD /) (10)

This loss function only depends on the distance between the two embeddings. How-
ever, an isometric transformation in the Poincaré ball exists, known as the Mébius trans-
formation [29]. Mébius transformation is defined as a map f : B"(open unit ball) — B",
which can be written as a product of the inversions of [E"(:= " L {e0}) through a sphere
S that preserves [B".

In contrast to the Poincaré ball, the isometric transformation on the metric cone does
not exist when the coordinate in the original space is fixed (we prove this property in
Appendix C). When we embed a graph into a metric cone, we define an indicator of the
hierarchical structure by replacing the norm with a coordinate corresponding to the height
of the cone (a one-dimensional parameter added to the original space):

score((w,s), (v, t)) = —a(s — {)d{u,v). (11)
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A point closer to the top of the cone is higher in the hierarchy, which is natural for
representing hierarchical structure.

2.5. Using Pre-Trained Model for Computational Efficiency and Adaptivity for Adding
Hierarchical Information

Consider a situation where we already have a trained graph embedding on a Euclidean
space (e.g., LINE [14]) and we try to learn the embedding in a metric cone of Euclidean
space to extract information about the hierarchical structure. In this case, we can reduce
the computational cost by fixing the coordinates corresponding to the original Euclidean
space and learn only the one-dimensional parameters corresponding to heights in a metric
cone added to the original space because the metric cone is one dimension larger than the
original space. The distance between each embedding in the original space is calculated
beforehand, since no updates are made by learning except for the 1D parameter to be
added. By referring to the pre-computed distances in the original space when calculating
the distances between each embedding on the metric cone (d-(x, i) in Equation (5)) during
training, we can reduce the amount of computation for the parts other than preprocessing,
regardless of the dimension. In addition, because the embedding in the original Euclidean
space is preserved, it can be used as an input to the neural network (when the task considers
information about the hierarchy and the added one-dimensional parameters are also used as
input) and can be easily applied to other tasks. However, other non-Euclidean embedding
methods to extract hierarchical structures are not scalable because these methods cannot
be applied directly to solve other tasks. For example, deep neural networks cannot use a
non-Euclidean embedding as input because the sum of two vectors in the space and scalar
product is not generally defined.
2.6. Comparison with Hievarchical Clustering

Although both cone embedding and hierarchical clustering aim to extract hierarchical
structures, there is a clear difference between their problem settings. In hierarchical cluster-
ing, only leaves in a result tree (dendrogram) correspond to data points and other nodes
correspond to created clusters. Thus, the problem setting differs significantly from cone
embedding in which each node in a data graph corresponds to a pre-defined entity. As a
result, hierarchical clustering cannot extract the hierarchy of nodes other than leaves while
cone embedding can do. Moreover, the order of computational complexity is also different:
hierarchical clustering requires O(n?), while cone embedding requires O(|E|) (| E|: number
of edges), making it suitable for extracting hierarchical structures in large graphs.

It has been also shown by [30] that the embedding of tree-structured (undirected)
graph data can be done naturally in hyperbolic space, but graph data with hierarchical
structure does not necessarily have a tree structure in general (e.g., there can be a cycle
when a child node has two parents which have the same parent). Thus, the combination
with hyperbolic embedding and hierarchical clustering may not be suitable in such cases.
Cone embedding does not assume the tree structure and extracts the hierarchical structure
by using the property that the closer to the origin O the shorter the distance between data
points, so that embedding can be learned even in this situation.

3. Theory

In this section, we give theoretical proof as to why the spatial properties of the metric
cone are suitable for extracting hierarchical structures.
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3.1. Identifiability of the Heights in Cone Embedding

As mentioned above, for Poincaré embedding, there is an isometric transformation
on the Poincaré ball and the heights of the learned hierarchy are not invariant to such
transformation. Here, we show that such a phenomenon does not occur for the cone
embedding, i.e., the heights of the hierarchy are (almost) uniquely determined from the
distance between the embedded data points in a metric cone.

Let Z be an original embedding space (connected length metric space) and let X be a
metric cone of Z with a parameter p > (. We assume thateach datapointz; e Z (i =1,...,n)
has its specific “height” t; € [0, 1] in the metric cone X. Our proposed method embeds data
points into a metric cone based on the estimated distances ﬂ'_ﬁ[-"-’z':xj} (i,j =1,...,n) and
tries to compute the heights {4, ..., {, as a measure of the hierarchy level. However, it is not
evident whether these heights are identifiable only from the information of the original data
points in Z and the distances a'_'.slfxg,x_f} (i,j = 1,...,n) in the metric cone. The following
theorem guarantees some identifiability. (A rigorous version of Theorem 1, including the
precise meaning of “identifiable” in (a)-{(c) and “general” in (b), is explained in Appendix C.)

Theorem 1. (a) Let n = 3 and assume that zq,...,zy are not all aligned on a geodesic in Z.

Then, the heights ty,. .., t, are identifiable up to at most four candidates.

(b)  Letn = 4 and assume zy,. .., zq and by, ..., b, fake "general” positions and heights, respec-
tively. Then, the heights by, ..., t, are identifiable uniquely.

(c) Ifdz(zizj) = '%ﬁ::r all i,j = 1,...,n, 1 # |, then the heights t1, ..., t, are identifiable
uniguely.

Theorem 1(a) indicates that the candidates of heights are finite and we can expect
the algorithm to converge to one of them, except for a very special data distribution in
the original space Z. Moreover, by (b), even the uniqueness can be proved under very
mild conditions. The statement in (c) implies that the uniqueness holds for arbitrary data
distributions when we set f sufficiently small.

Remark that the assumption of “general” positions in Theorem 1(b) is satisfied easily
for most data distributions. For example, if both zq,...,z, € B¥ and ¢,...,t, € [0,1]
are i.i.d. from a probability distribution whose density function exists with respect to the
Lebesgue measure, then it is easy to see the assumption holds almost surely and therefore
the uniqueness of the solution is guaranteed. Note that, for n = 3 under the same setting,
there can be multiple solutions with a positive probability.

3.2. Variable Curvalture

One of the essences of Poincaré embedding is that a negative curvature of the Poincaré
sphere is suitable for embedding tree graphs. The curvature of a metric cone has a similar
property, i.e.,, a metric cone has more negative curvature than the original space and,
furthermore, the curvature can be controlled by hyperparameter 5. We will verify these
facts mathematically from two different aspects: (i) the scalar and the Ricci curvatures of a
Riemannian manifold and (ii) the CAT(k) property of a length metric space.

First, assume the original space M is an n-dimensional Riemannian manifold with a
metric g. Then the metric ¢ of the corresponding metric cone with p can be defined except
for the apex and it becomes as (6). Let 1,...,n be coordinate indices corresponding to
x € M and 0 be the index corresponding to s € [0,1]. The Ricci curvatures R;; and the

scalar curvature R at (x,s) become
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Ry = Ryy — 2 (n—1)p728,., (12)
R.ﬂ:ﬂ‘ = Rﬂn = J.:-:E'!:'.I =0, (13)
R={n"2R-n(n-1)"%}s2 (14)

where a, 7 are coordinate indicesin 1,...,n and R;; and R are the Ricci curvatures and the
scalar curvature of M, respectively. See Appendix B for the derivation of such curvatures.
The scalar curvature and the Ricci curvatures R,., become more negative than (a constant
times of} the original curvature for § < co and n > 2. Moreover, the smaller value of §
makes the curvature more negative; thus, it becomes possible to control the curvature by
tuning p. Note that, the closer to the apex, i.e., the smaller the value of s, the greater the
change of the scalar curvature.

Second, assume the original space M is a length metric space. This does not require a
differentiable structure and is more general than the Riemannian manifold. In this case, we
cannot argue the curvatures using the Riemannian metric but the CAT(k) property can be used
instead. In [24], they proved the curvature of the metric cone is more negative or equal to the

curvature of the original space and it can be controlled by § in the sense of the CAT(k) property.
4. Experiments

The claim in this paper is that “a hierarchical structure can be captured by adding a
one-dimensional parameter and embedding it in a metric cone.” Therefore, we evaluate the
proposed method in two experiments:

*  DPrediction of edge direction for artificially directed graphs;
*  Estimation of the hierarchical score by humans for WordNet.

As a comparison, we compare the proposed method with two other methods: Poincaré
embedding [17] and ordinary embedding in Euclidean space, which are known to capture
the hierarchical structure of graphs. For Euclidean embedding, we use the distance from
the mean of embedded data points as the hierarchical score in (8).

4.1. Prediction of Edge Direction for Directed Graphs

In this experiment, we estimate the orientation of directed edges for some simple

graphs such that it is natural to think of the direction of the edges as representing the
vertical relationship in the hierarchy.

4.1.1. Settings

We use the following three patterns of graphs with a naturally set hierarchical structure:

*  Graphs generated by a growing random network model called the Barabasi-Albert
preferential attachment [31] with m = 2, where m is the number of edges to attach
from a new node to existing nodes;

*  Complete k-ary tree;

¢  (Concatenated tree of two complete k-ary sub-trees.

For the growing random network model, the hierarchy and the corresponding orienta-
tion is naturally defined by the order in which each node is attached. For each tree, node
depth can be treated as its hierarchy. The concatenated tree is created by connecting the
roots of two complete k-ary trees to a new node, which is then used as the new root. The

concatenated tree is considered to study the effect of node degree on the cone embedding
as will be explained below.
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In this experiment, we learn the embedding of each directed graph. However, we use
the information of directions only for evaluation and not for learning. For each directed

edge of the learned graph, we estimate the direction by the computed hierarchical scores
score(u, v):

total_score = E score(u,v)/ |E| (15)
[, 0)1E
1 score(hypo, hype) = 0

16
0 otherwise (16}

score(hypo, hype) = {

where hiype : higher hierarchy node

hypo : lower hierarchy node

Hyperparameters were set as follows. First, the number of negative samplings was
set to 5; while increasing the number of negative samplings increases the amount of
computation, the effect on accuracy was not significant, so it was set small. Learning was
performed for values of § at 0.1, 0.5, 1, and 5, and the best results are described in Table 1.
Here all nodes and edges of the graph are used for both training and evaluation.

Table 1. Result for prediction of edge direction for directed graphs. (We list accuracy and standard
deviation. Compared to other methods, cone embedding tends to extract the hierarchical structure

correctly even when the number of nodes increases).

Model Barabdsi-Albert Complete k-Ary-Tree Concatenated k-Ary Trees
(Nodes: 100) k=3(121) k=5(781) k =3 (81) k =51(313)

Cone  0.936 (sd: 0.005) 0.787 (0.049) 0.799 (0.037) 0.783 (0.045) 0.744 (0.056)
Fuclidean  0.181(0.004)  0.074 (0.088) 0.127 (0.020) 0.190 (0.136) 0.155 (0.031)
Poincaré  0.957 (0.012)  0.935(0.015) 0.351 (0.022) 0.880 (0.060) 0.606 (0.043)

4.1.2. Results

The experimental results are shown in Table 1 and the cone embedding shows overall
good and stable estimation accuracy for hierarchies. Examples in Figure 2 depict how
each graph is embedded in a metric cone. Other existing methods may outperform for
sparse trees (small degree of each node) but this method has an advantage for dense trees.
The reason for the instability in the accuracy of Poincaré embedding may be the lack of
invariance with respect to the equidistance transformation, as we have explained. The
main reason for the poor hierarchical estimation accuracy of Euclidean embedding is that
the root or higher hierarchical nodes are embedded apart from the cluster of other nodes as
in Figure 3. As a result, the root node becomes far from the origin of the embedded space.

For the Barabasi-Albert model, the relationship between the (added 1D) coordinates
of the cone hierarchy and the order is shown in Figure 4. We can see that there is a strong
relationship between the degree and the hierarchy. This raises the suspicion that the degree
of the node alone determines the hierarchy of the embedding. However, the fact that the
cone embedding provides high estimation accuracy even for the concatenated trees with
low root degree indicates that this is not true.
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Figure 2. Graphs used for training: (left) model trained by Barabasi-Albert model, (middle) com-
plete k-ary tree, (right) concatenated tree of two complete k-ary trees. The x- and y-axes represent
embedding in Euclidean space, which is dimensionally reduced to two dimensions by principal
component analysis, and the z-axis represents the height in the metric cone (coordinates representing
the hierarchy).
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Figure 3. An embedding of the complete k-ary tree (k = 3). Each point is plotted by the 3D Euclidean
embedding and the color represents length of shortest path from root node (the bluer the color, the

higher the hierarchy).
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Figure 4. Plot of the hierarchy value of each node in a cone embedding (a newly added one-
dimensional parameter) against their node degree.
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4.2, Embedding Taxonomies

Following an experiment in [17] for the Poincaré embedding, we evaluate the embed-
ding accuracy of the hierarchical structure using WordNet. To verify this, we embed the
nouns in WordNet into a metric cone and use the score function (“total_score” described in
Section 4.1). Note that hyperparameter a was set to 10°. The output of this score function
and the correlation coefficient of the HyperLex dataset’s score (evaluated manually whether
a word is a hyponym of another word) are used to evaluate the ability to represent the
hierarchical structure of the model.

In addition to hierarchical scores, we also evaluate the accuracy of graph embedding.
We use mean rank and mean average precision, which are commonly used in existing graph
embedding accuracy, as evaluation metrics. The mean rank is calculated for each node as
the rank of its neighbors when sorted in order of distance. The mean average precision is
calculated as follows:

1.  Fix one node and calculate the distance to all other nodes.

2. Consider the node adjacent to the fixed node as the correct data, and calculate the
average precision for this correct data using the distance as the confidence score.

3. Perform the above two operations on all the nodes and take the average.

The embedding accuracy (mean rank (MR) and mean average precision (MAT)) and
correlation coefficients are also shown in Table 2. Note that all of the graph data are used
for training and the results are evaluated according to the accuracy with which the graph is
reconstructed from the learned embedding. Because the same data are used for training
and evaluation, we evaluate the fittingness of the embedding method to the data.

Table 2. MAT, mean rank (MR), Hyperlex score (correlation efficient) and computation time for
WordNet. Cone embedding is trained from Euclidean embedding, e.g., in 10-dims cone embeddings,
we trained additional 1-dim parameters from 10 dims Euclidean embeddings. For MR and comp.
time lower is better, and for MAT and corr. higher is better.

Model Evaluation Dimensions
Metric 10 20 50 100
Euclidean MR 1681.18 583.75 233.7 162.43
MAT 0.07 0.12 0.25 0.37
COrr 0.25 .34 0.38 0.39
comp. time 976.48 984.72 21691 20957
Poincaré MR 130622 1183.29 1112.42 1096.08
MAT 0.09 0.13 0.14 0.16
COTT 0.07 0.08 0.09 0.09
comp. time 2822.99 1807.73 3954 2417
Cone MR 426.75 67509 713 910.51
(=10 MAT 0.10 (.08 0.07 0.06
corr 0.39 0.40 0.40 0.40
comp. time 177.94 174.67 168.33 187.83
Cone MR 688.85 143.23 74.39 51.32
(5 =5.0) MAT 0.07 0.23 0.50 0.57
COIT 0.35 .35 0.37 0.38
comp. time 176.04 171.21 168.7 189.89
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The table shows that our proposed model improves the score and captures the hi-
erarchical structure better than other embedding methods. Furthermore, “comp. time”
represents the time taken to train the embedding (1000 epochs); for cone embedding, it
represents the time taken to train in one additional dimension (100 epochs). From the
table, we can see that our method is efficient in learning and does not vary with the di-
mension of the embedding. The result also shows that the optimal § value can depend on
the dimension. Because larger £ corresponds to smaller curvature, the proposed method
seems to perform better when embedding in a smaller curvature space if the dimension
becomes higher. For the same reason, Euclidean embedding is considered to perform better
than Poincare embedding in high dimensions due to their zero curvature. Tuning of f§ is
necessary because the optimal value also varies depending on the training data. In this case,
the search was done in § = 0.1,0.5, 1.0, 5.0 but a finer search may improve the accuracy.

Furthermore, an example visualization of the hierarchical structure of the embedding
vectors obtained by the training is shown in Figure 5. As the figure illustrates, the closer
the coordinate corresponding to the height in the cone is to zero (closer to the top of the
cone), the higher the noun in the hierarchy is located in the embedded representation. For

visualization, the embedding vectors in Euclidean space were reduced to two dimensions

by principal component analysis.
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Figure 5. Visualization of wordnet hypernym and hyponym relations by cone embedding (beta: 1.0)
learned from 10 to dimensional Euclidean embedding. The right figure is for the car and the left
figure is for sport, describing the relationship with one higher or lower word. (In the visualization,
all nodes are visualized, but only some of the word names corresponding to each node are shown.
The original embedding vector (Euclidean in this case) is also made two-dimensional by PCA.)
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5. Diiscussion and Future Works

In this study, we have demonstrated that a graph embedding in a metric cone that is
a dimension larger than the existing embedding methods has the following advantages:
(1) we naturally define an index (score function) as an indicator of hierarchy, (2) the
proposed method has some adaptivity since it can introduce the hierarchy into various pre-
trained models by learning only newly added 1D parameters, and (3) thus, the optimization
is computationally inexpensive and stable. By optimizing the 1D parameters, we have
shown that the proposed method also has the flexibility to optimize the curvature to
enhance the accuracy as well as other methods. Since the metric cone is defined as a space
with +1 dimension with respect to the original metric space, it is also possible to learn cone
embedding in the same way even when the original space is Poincaré. We demonstrated
the feasibility of extracting the hierarchical structure using solely the additional space by
fixing the original space and learning its embedding.

It is worth noting that an alternative approach involves directly embedding the graph
into the metric cone by learning an embedding that includes the source space. However,
the constraint of learning in one dimension offers some advantages. For instance, the metric
cone is defined as a space with +1 dimension with respect to the original metric space,
which allows for the learning of cone embedding in the same way for any general original
spaces, including the Poincaré space. The independence of the optimization algorithm
from the original embedding space results in a more stable computation. For example,
the cone embedding performed best or fairly for overall settings while the Poincaré em-
bedding performed very poorly in some experimental settings. Moreover, the tuning
of hyperparameters such as § for embedding can be performed independently from the
original embedding,
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Appendix A. Derivation of the Metric Tensor of a Metric Cone

Let M be an n-dimensional Riemannian manifold with a metric g. Then the metric §
of the corresponding metric cone M = M can be defined except the apex. Denote the

square of the infinitesimal distance in M as |d3|?, then
\ds? = dg((x,r), (x + dx,r + dr))?
= ,E;1 (Erz + 2rdr + dr’ = 2(r 4+ dr)r cos(mmin(d s q(x, x +dx) /B, 1}})

sy
~ (Erz + 2rdr + dr? — 2(r + vdr) (1 _ {rmdm [I’x;_ 4x)/B) ))

= prdr? + 7tr? Zg,-}-dx,-dxf- + mrdr Egi-;-dx,-dxj
i i

N ji)T ( [gz:]zg!—_r—} AP, 7

Therefore, the metric tensor § becomes

rlg 0
2 mrg
Appendix B. Derivation of the Ricci and the Scalar Curvatures of a Metric Cone

We will derive the Ricci and scalar curvatures of metric cone M Let 0,1, ..., n be the
coordinate indices of metric cone M where 0 corresponds to the radial coordinate s € (0,1)
and 1,...,n correspond to x £ M.

Claim A1. The Ricci curvatures R;; and the scalar curvature R become

Rlx-'r = R.ﬂ:"r’ - HZ(”I i l}lﬁ_zgﬂ:"rl' foﬂ — EGII == Rﬂn — ﬂ;

R={m"2R-n{n-1)"2}s2 (A3)

where & and 7y are coordinate indices in 1,. .., n and R;; and R are the Ricci curvatures and the
scalar curvature of M, respeclively.

Proof. By Example 4.6 of [32], if the metric of M is defined by the squared infinitesimal
distance |ds|? in M and a C?-class function w on an open interval | C R as

|ds|* = g%|dr|* + w(r)®|ds|?, (A4)
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the Ricci curvature tensor becomes

) ol 2 i L 2 ' "
Ray = Ray — {n—l}(w) + - gﬂ.rzﬂﬁ,r—((u—lj(w) + w)n: Loy

Ri=0 Ryp=—(n—1)=— (A5)

=

and the scalar curvature becomes

R=w"2R—n(n-1)(w)?* - 2nww"). (AB)
Since the metric of a metric cone M is given by
|ds|*> = B*|dr|* + 7% |ds|?, (A7)
by setting 7 := fr and w(F) := w17, we obtain the following form similar to (A4):

|ds|? = |dF|? + w(F7)?|ds|?. (A8)
By substituting w(F) = 7~ 'F = mr, w'(F) = mp ! and w" (F) = 0, we obtain the Ricci
and scalar curvatures in Claim Al. O

Appendix C. Identifiability of the Heights in the Cone Embedding

In this section, we will prove Theorem 1 of the main article. Let us begin by rewriting
Theorem 1 as a longer but more theoretically rigorous form.

Theorem Al (A rigorous restatement of Theorem 1). Let Z be a length metric space and X
be a metric cone of Z with a parameter § > 0. Let n be an integer at least 3. Fix z; € Z and
x; = (zi,t;) € Xwitht; € [0,1] fori =1,.. ., n. Denote a matrix D := [d_'ﬁ{x;,x_r-)];;-_r

(a)  Assume zq,...,zy are not all aligned in a geodesic. Given zi,...,z, and D, the number of
possible values of (ty,..., 8, ) is al most four.

(b) Letn = 4 and assume 2y, ...,z and by, ..., I, are in a “general” position. Here "general”
position means that, besides the assumption in (a), given any four distincl points z;,z, 2, 7 €
Z and corresponding heights t;,t;,t; € [0, 1], t; can still take infinitely many values. Then
H, ..., by are determined If!rfquffy byzy,...,znand D.

fc) le"d{za-,zj;]l =B/2foralli,j=1,...,n, i # |, then ty,. ..ty are determined uniquely by
Z1,-..,Zy and D.

Before the proof, we will state some remarks.

If n = 2, the identifiability problem reduces to an elementary geometric question:
given a circle sector as the right two subfigures of Figure 1 of the main paper and the
length of the blue line segment(s) connecting (x,s) and (y, ), can s and { be determined
uniquely? The answer is evidently no. However, it is notable that there are two types of
counterexamples. The first type is as Figure Ala, one point moves “up” and the other
moves “down”. The other type as Figure Alb is maybe counter-intuitive: both move “up”
or “down”. Note that the second case does not happen if the angle # is larger than or equal
to /2.
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Figure Al. Two types of movement for a line segment of constant length {a) One point moves “up”
and the other moves “down” (b) Both move “up” or “down”.

If n = 3, the picture becomes a tetrahedron as in Figure A2. Here the angles and edge

lengths are defined by

By := mmin(dz(z3,23) /B, 1), @y := Jﬁ(xg,xp,}
By := Tmin(dz(zs,z1)/B, 1), az:= Jﬁﬂxg,xl} (A9)

By := mmin(dz(zy,22)/ B, 1), a3 = dg(x1,x3)

and 8, + 62 + 5 is assumed to be at most 277. Then, the geometrical question becomes
“when angles a, §, 7 and edge lengths ay, 72, a3 of triangle /.x; x5 is given, can the position
of the points x1, x2, and x3 be determined uniquely?” If it is not unique and there are two
different positions of xq, x», and x3, at least one edge should move as in Figure Alb since
it is impossible to move all three edges as in Figure Ala. However, if all of the angles are

larger than or equal to /2, this cannot happen. This actually gives a geometrical proof of
Theorem Alic).

If 81 + 62 + 05 is larger than 27, the geometric arguments become complicated. We do
not need this kind of case analysis when we use algebraic arguments as in the following
proof.

Figure A2. Metric cone generated by three points 21, z32,z3 € Z.

Now we will prove the theorem. In the proof, we use the Grébner basis as a tool
of computational algebra. See for example [33] about definition and application of the
Gritbner basis.

Proof. (a) Since the maximum number of possible values of (#y,..., ;) does not increase
with n, it is enough to prove for n = 3. We set 81,82, 63 € [0, 1] and a1, a2, a3 > 0 as (A9).
Then, by the law of cosine,
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r% 4 !% — 2talscosth = ay,
£5 + 13 — 23t cos br = a3, (A10)

rf + !% — 2htacosty = a3.

We consider this as a system of polynomial equations with variables t4, {5, t; and com-
pute the Grobner basis of the ideal generated by the corresponding polynomials by degree
lexicographic monomial order (deglex) with iy = 15 > {5 by Mathematica (see Note Al).
Then the output becomes as in Note Al and the basis includes —J'Iz + (2cosr )btz — 15 + a3,
—r% + (2cos b )taty — !% + a% and 4o(f, Hg,ﬁﬂf‘;‘ + (terms of degree< 2) where

o(fy,6,03) ;=14 2cost costh costly — cnsﬂ‘l'z — €08 H% — COS H%. (A11)

Note that when 6 + 6 + 83 < 2, 1525 0(84, 62, 63) is a formula of the volume of the
tetrahedron whose base triangle is Axyx2x3 and, therefore, it has a positive value unless
the tetrahedron degenerates. By the assumption, zq, 23, z3 are not aligned in a geodesic and
therefore the tetrahedron does not degenerate and ©v(#y, 6>, ¢5) must be nonzero. Note that
this becomes negative when ) + t; + 3 > 2.

On the other hand, it is known that the system of polynomial equations with a Grobner
basis G has a finite number of (complex) solutions if and only if, for each variable x, G
contains a polynomial with a leading monormial that is a power of x. Now, all variables
f1,t2, and t3 satisfy such a property; thus, we conclude there are at most a finite number of
solutions.

Then, by Bézout's theorem, the number of solutions is at most the product of the
degree of three polynomial equations, i.e,, 2 x 2 x 2 = 8. However, if (t1, {2, t3) is a solution,
(—ty, —ta, —t3) is also a solution, and only one of each pair can satisfy tq, {5, t3 < 0. Thus,
we conclude the number of possible values of (f4, t2, 13) is at most four.

(b) By the assumptions in (a), without loss of generality, we can assume zq, z5, z5 are
not aligned in a geodesic. By the result of (a), given zy, 25, z3 and distances Jﬁ(xi,xﬂ,

Jﬂ[II,Ig},ﬂTﬂ{XQ, x3), there are at most four variations of the values of ({{, Iz, I3). Here we
assume {, can take multiple values including {; and f;.

Suppose, in addition to the above, the values of z4 and dﬁ{xh x4)(=: a4) are given and
let 84 := 7T min(dz(z1,z4) /B, 1). Then, both {; and {; satisfy r% + fi — 2l tycosty = a% and
therefore 2ty cosfy = Iy + I; must hold. Since #; and {; are different non-negative values,
f1 + f; > 0 and, therefore, cos fy # 0. Hence, we obtain ty = ({; + F)/2 cos#.

This means if ¢4 takes values except (§; + f,) /2 cos 8, at most only one of f; and {; can
be a solution. We can reduce each pairwise ambiguity of the (at most) four possibilities of
(t1,ta,t3) one by one similarly. Finally (#q, {5, {5) are determined uniquely for all except at
most {3} = 6 values of ty. However, such finite values of t4 can be neglected thanks to the
assumption of the “general” position in the theorem. Since the same argument holds for
any triplets, the statement has been proved.

(c) If (t,..., ) can take multiple values, without loss of generality we can assume
(ty,12,13) takes multiple values. By the assumption in the theorem, #,,8,,8;, > /2
and therefore all coefficients in each equation of {(A10) become positive. Thus, if {; in-
creases/decreases then f; must decrease/increase for (i,j) = (1,2),(2,3),(3,1) but this
cannot happen simultaneously. Hence, ({4, s, {3} cannot take multiple values.

Note that all of this proof works even when &) + 2 + #s is larger than 2. [
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Remark Al. The assumption in Theorem Al(a) is necessary. If the assumption fails, the tetrahedron
degenerates and xq, X2, x3 and the apex O are all in a plane. When O happens to be on a circle
passing through x1, x2, and x3, move O to another point O' on the same circle. Then, the angles
corresponding to 6y, 82, 05 do not change by the inscribed angle theorem. By an elemental geometrical
argument, a new position of xy, x», x5 and O’ gives another solution of ty, {5, t5. Hence, obviously,
there ave an infinite number of solutions.

Remark A2. The assumption of “general” positions of zy,...,zy in Theorem Al(b) is satisfied
easily for most data distributions. For example, if both zy,. ..,z € Ridandtq,... . tx € [0,1] are
i.id. from a probability distribution whose densily function exists with respect to the Lebesgue
measure, then it is easy fo see the assumption holds almost surely and therefore uniqueness of the
solution is guaranteed. Note that, for n = 3 under the same setting, there can be multiple solutions
with a positive probability.

Note Al. Computation of the Grobner basis by Mathematica:

For simplicity, we put x :=ty, y :=ty, z := I3, a1 := 2cos by, b := 2cos by, c := 2cosbh,
d = n%, e := a3, and f := a3.

Note that the second, first, and last polynomials in the output correspond o — 13 + (2 cos 6 )t 1t —
15+ a3, —15 4 (2cosb3)tats — 13 + a3, and 4v(6, B2, 03)13 + (terms of degree < 2) in the proof
respectively.

In := GroebnerBasis[{x~2 + y~2 - asx#y - d, x72 + z"2 - bexsz - e,
¥y°2 + 272 - cwywz - f}, {x, v, =z},
MonomialOrder -> DegreeLexicographic]

Out = {f - y"2 + c y 2 - 272, @ - x2 +bxz - 272,

d -x"2+axy- ¥y,

dx -ex+aey-xy2-bdz+by2z+xz2-

aye2, ~-cdx+cex-acey+bfy+cxy2-0by3+
becdz-afz+ay2z-cxz2-byz2+az3,
afx+dy-fy-w2y-cdz+cx22-axgz22+yai,
bBfx-cey+cxy-bxy2lt+taez-Ffz-x"2czt+

¥y2z, ccex*abfx+cx3+bdy-bIfy-Dbxdy-
becdz+aez-axZes+rcxrxz2+byz2-az3,
acdx-acex+bfxtcdy-cay+a2cey-abfy-
bxy2+aby3d-cy3d-abecdz+ez-Ffz+a2fz-
2z +y 2z -adyZztrtacxzT2+abyet? -

a2 273, caef -dxy+exy+fxy+cdrxz-ceixz+

bdyz-bf
cxz"3 +by
ce X2 -bd
b2 dyez+ 2
b™2 c d 272 +
3y z"3 + b2
2ex - a2e
aay+a3de
X yT2 - b2 x

Z-bcdz"2 +aez"2+afz"2 -2 xyz2+

3 -~az4, ~-cde+ce2-abef+cdzx2-
y+bexy+bfxy-afxzz-dyzH+
yz+fyz-b2fyz-x2yz+2cdel-
bez2 -2 cez2+abfz22+axz3-

z7 3 -abzd+czd dx+a2dx+abecdzx+
~-abecex-a2fx+b2fx-x"3+bcdy-
~-bcey+a2becey+afy-ab2fy+

"2 -ay3dit+tab2y3I-becydI+bda -

T - T - - o R -
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S

a2 bdz+acdz-ab2cdz+bez-acez-hbifsz

a2 bfz-2xz72+2a2xz2-a3ye2+ab2ye-
a2bz3+acz3, ~cd2+cde+abdf+cdx2-cex"2+
bfxy-abdy2+2cdy™2-2cey2+allcey2-
abfy2-bxy3+abyd-cyd-adzz+aexe-
afxz-2ddyezs+eyz-aZdeyz-fye+a2fyez+
¥2yez+ 3 y3=z- a2 y3ez,

d72 - 2 de+c2de+e’2-c2e2-2df+b2df+2ef-
a2 ef+tabecef+ 72 - b"2 £72 - ¢c”2 d x72 + c72 @ x72 4
bedxy-becexy-becfxy-b"2dy2+b21fy2+
acdxeg-acexeg+acfrxz+abdyz+abeyes-
abfyz+4de2-20b2dzr2-abedz"2-2c¢c2dz"2+

b2 c”2dz2 -4dez2+aez2-abcezd+2Zclezl-

4 fer2+a”2fegr2+2b2fz"?2-abefzrd+4ze”d - a”2e"d-
b2 z"4 + abcz"d4 - 72 274}
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ABSTRACT

( The quadratic boost (OB) converter is a fourth-order system with a dc gain that is higher than the\
traditional second-order step-up configuration. The modern controllers that control these high-order
de—dc converters often only guarantee local stability around a steady-state equilibrium point, which
is one of their primary drawbacks. In this article, a non-linear robust control law design to attain
large-signal stability in this single switch QB converter is presented. In the presence of an
unpredictable load, the control objective is to maintain the regulation of an output voltage. The
Brunovsky canonical model of the converter was derived first, and the non-linear disturbance
observer-based sliding-mode (SM) control law is designed based on it. An observer variable precisely
estimates the output disturbances. The detailed process for deriving the control signal is described in
this paper and the large-signal stability of the closed-loop converter system is ensured via the
Lyapunov function. Finally, some simulation results are shown to validate the usefulness of the given
controller.

Keywords: quadratic converter; sliding-mode control; observer
- J

Introduction

The dc—dc boost converter is employed in several fields, including electric vehicles, telecommunication
equipment, energy systems based on non-conventional resources, and so on [1-3]. For instance, the
voltage at the output of a single fuel cell is very low, of the order of 1.1 V, and its stacked version could
produce around from 24 V to 60 V. However, this voltage is not enough at the input of an inverter for
applications in the power range from 1 kWtoSkW.Thus,adc—dcconverter can be employed between the
nonconventional energy resource and inverter and its gain should be high enough to make up for the
differences [1]. The second-order classical boost converter can step up the output voltage, but its gain is
limited because it needs to operate at a considerably high duty ratio to produce high gain, and switching
devices have limited finite switching durations. It may also incur EMI and reverse recovery issues of the
diode. Lastly, working at high duty ratio values could affect the system’s dynamic response to parameter
variations [4]. One of the solutions to address this problem is using transformer-based dc—dc power
converters to provide high gain before interfacing with inverters. However, if a particular utilization
area does not need any isolation, the usage transformer becomes redundant, and it ultimately increases
the system’s size and pricing. The high-order transformer-less power converters are thus receiving

attention because they do not only eliminate the use of transformers but also avoid high values of the
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duty ratio to offer a large conversion ratio [5—8]. Moreover the voltage stress is also limited in their
cases. Among them, the quadratic boost (QB) converter is a popular candidate due to its high efficiency,
smaller size, and ease of control due to having a single active switch [6]. The control aspect of high-step-
up converters like the QB converter has recently been the interest of some research [6—12]. However,
their control is not very straight forward because right half-plane zeroes are present in the control to load
voltage transfer function of these converters [13]. Because of this, the closed-loop system could lose its
stability. To address the first concern, one of the widely used regulation methods for the higher order
power converters is employing the current through the inductor for feedback purposes [14]. The
additional current-loop, apart from the basic voltage-loop, provides stability to the system
andgivesinbuilt overcurrent protection. In [13], the application of the current-based control scheme for
the quadratic boost converter was investigated. The more advanced current-mode control, based on an
adaptation algorithm for the sixth-order boost converter, was discussed in [15]. Even though all of these
current-mode controllers are shown to provide a satisfactory response over a large range of parameter
changes, they are based on the small-signal averaged model of the converter, which can only ensure
stability in the vicinity of a steady-state operating point. Asliding-mode (SM) scheme is another well-
employed scheme that is suitable for dcdc converters [ 16-24]. Traditionally, hysteresis-modulation is
used for the implementation of the SM controller for dc—dc converters [6,20-22]. This method has
recently been used to regulate the output voltage of several high-gain converters like the quadratic boost
converter [6,20], the hybrid boost converter [21], and the zeta converter [22]. Although this method is
easy to implement, its main drawback is that it may lead to chattering in the response. Also, since the
switching frequency is not fixed, there could be large variations in the switching frequency in the
presence of load and line variations. This maylead to increased switching losses and electromagnetic
interference (EMI) issues. To address these concerns, recently, the constant-frequency SM scheme has
been employed for high-order boost converters like the quadratic boost converter in [ 16]. In this method,
the pulse-width-modulation (PWM) technique is used to generate the control signal. The various
advantages offered by this method are ease of implementation, reduced chattering, and lower
electromagnetic interference (EMI) issues. Some of the other state-of-the-art SM controllers for dc—dc
converters based on the PWM approach are discussed in [17,18]. As can beseen, there has been
considerable efforts made to wards the implementation of several non-linear controllers for high-order
dc—dc converters. However, the main drawback of most of these controllers is that their stability is
guaranteed only in the neighborhood of the equilibrium point. In other words, they guarantee only small-
signal stability and none of the works discussed so far address the large-signal stability of the controlled
high-stepup power converters. Thus, to ensure smooth tracking in the presence of large and fast
variations in the system parameters, the problem of the design of a robust and globally stable controller
for high-step-up dc—dc converters still needs to be addressed. To address this, a new SM controller

design based on disturbance observer (DO) for the QB converter’s output voltage regulation is

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025) Page No. 45



presented. The main contributions of the paper are—(I) first, as opposed to the existing methods
discussed above, the proposed controller ensures global stability, which has been proved using the
Lyapunov function. To this end, the sliding surface and corresponding observer variables are selected
such that the suitable Lyapunov function can be selected for the global stability analysis; (ii) secondly,
instead of using the conventional averaged state-space model for the controller design and analysis, the
Brunovsky canonical form of the model for the quadratic converter is derived and used for the controller
design. This model accommodates the disturbance variables and aids in the derivation of the control law
based on the proposed DO-based sliding surface; (iii) lastly, in order to avoid the chattering and EMI
concerns, the PWM method of implementation is used for the implementation of the globally stable SM
controller. The main control objective is to regulate the output voltage in the presence of parameter
variations such as load changes. An in-depth derivation of the equivalent control law control law and a
thorough stability analysis are presented. The suitability of the proposed control scheme has been
authenticated by simulation results performed in MATLAB Simulink. It is important to mention that the
design methodology of the given control law is such that it can be applied for the control of other types of
high-step-up converters as well. The manuscript is structured as follows. In Section 2, the circuit
diagram along with scheme has been authenticated by simulation results performed in MATLAB
Simulink. It is important to mention that the design methodology of the given control law is such that it
can be applied for the control of other types of high-step-up converters as well. The manuscript is
structured as follows. In Section 2, the circuit diagram along with an averaged model of the QB
converter is given. Next, Section 3 discusses the detailed control law design and the global stability
analysis of the system. Finally, in Section 4, some an averaged model of the QB converter is given. Next,
Section 3 discusses the detailed control law design and the global stability analysis of the system.
Finally, in Section 4, some simulation results are given to establish the ability of the derived control law
to handle large signal disturbances, followed by the conclusion in the last section.
2. State-Space Modeling for Quadratic-Ratio Converter
The quadrtaic boost topology’s circuit schematic is depicted in Figure la. It has an extra step-up
arrangement compared to the second-order conventional boost topology. This additional arrangement
primarily consists of an additional boost stage but without an The quadrtaic boost topology’s circuit
schematic is depicted in Figure 1a. It has an extra step-up arrangement compared to the second-order
conventional boost topology. This additional arrangement primarily consists of an additional boost
stage but without an additonal active switch. The use of a single active switch reduces the converter
switching losses. In summary, to increase the gain of the orthodox step-up topology, two boost

converters are combined using one active switch to create this converter [25].
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Figure 1. Circuit diagram and operational modes of the quadratic converter: (a) Circuit schematic;
(b) switch ON; (e) switch OFF.

averaged modeling equations: (a) The MOSFET ‘S’ switches on and off in synchrony with all of the
diodes; (b) the dc—dc system works in a continuous mode of conduction; (c) all of the diodes and the
semiconductor switches are viewed as perfect components with very low parasitic resistance. The
following describes the system’s two operational modes. ‘Mode 1°: In this mode, diodes D2 and D3 are
biased in the reverse direction while D1 is forward biased. Also, the semiconductor device ‘S’ is closed
while the device is working in this first condition. Energy is stored in the two inductors, L1 and L2, by
the input voltage sources E and C1, respectively. The derivative expressions for this mode of operation
can be obtained by employing Kirchhoft’s laws of voltage and current (KVL and KCL) in Figure 1b, and

as aresult we obtain (see Appendix A for detailed derivation):
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where xy =i} and x; = i, are the currents through L, and L;, respectively, and x3 = v,
and x4 = v, are the voltages across C) and G, respectively. Also, E and R are the source
voltage and actual load value, respectively.

‘Mode 2': In this operational mode, the semiconductor MOSFET ‘S’ is in an OFF state
and D4 and D5 are biased in the forward direction while D is also forward biased. This
ensures a way for the flow of the inductor current x; and x; to the load, and the energy from
the input and these two inductors is transferred to the load. The derivative expressions
for this mode of operation can be obtained by employing Kirchhoff's laws of voltage and
current (KVL and KCL) to Figure 1c, for which we obtain (see Appendix B for detailed
derivation):

dxy E—13

T (5)

dxz  x3—2xy

dt L )

dys  x)—1x;

IH’ h Cl {?:I
dry  x2 o xy (8)

At G RC,

MNext, the averaged state-space model of the QB converter is obtained. In this technique,
the differential equations for the *ON’ state and the ‘OFF’ state are averaged over one
switching period, 'T’. Basically, the "ON’ state equations given by (1)~(4) are multiplied by
kT, the “OFF’ state equations given by (5)—(8) are multiplied by (1 — k)T, and then these
equations are added with each other and divided by the total time period, 'T'. Here, k is
the duty ratio which is also the control signal of the converter such that 0 < & < 1. Using
(1)—(8), one can obtain the averaged state-space expression of the system, given by:

dxy 1 1
idxa 1 1
dxa 1 1
F=E‘_1“_k}xl_c_']x2 (11)
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dxy 1 1
S T E‘_g“ — k)xz — RC,

MNow, one can determine the equilibrium values of the converter by equating (9)-(12)
with zero as follows:

(12)

2
Vo Ve g VitE
RE-" 2ref Rl’ Aref 2

Xiref = , Agref = Vg (13)
where X0, Xoeps Xarer, and Xyep signify the reference values of xy, x2, xz, and x4, respec-
tively, and V; is the reference output voltage.

The aim is to design a suitable non-linear control law to ensure the global stability of
this converter when an uncertain load occurs.

3. Controller Design

In this section, on the basis of the averaged model given by (9)-(12), a non-linear SM
is designed. The goal is to track the output x4 to its reference Xy,..

3.1. Transformation into Canonical Form

The widely used averaged state-space model of the de-dc converter is not suitable to
design the proposed controller in order to achieve a large signal stability. To this end, the
averaged state-space model given by (9)-(12) is converted into the canonical form such
that the first state variable, py, is the overall system’s energy and the second state variable,
12, is the difference between the input and output power [26]. This allows the disturbance
variables 4; and &> to be included in the model and, later, their observers can be used for the
design of the SM controller. The model in the revised form is shown below (see Appendix C
for detailed derivation):

p1L = p2 + 6 (14)

Jﬁz =m+ dp (15)

Here, py = 0.5(L1x,% + Lyxs® + Cy x5 + Cax4?) and p = Ex; — x4°/R,, such that
R, is the system’s nominal resistance. Also, the mis-matched disturbance is given by 4, =
142/ R, — v42 / R and the matched disturbance is givenby &2 = (2/R,Ca) {—J:.;EIR,J - x.;z,-’H}l.
The virtual control law is m = E2/L; + 2x42/ RyCy — (Exa /Ly + 22014/ RoGa) (1 — k).

Mext, this model is used for the controller design. From the expression of m, the value
of the control signal is obtained as:

C2R,2E? + 2L 0,2 — L1CaRo*m

~ GR,7Evg, + 2L Roig, g,
The original control objective that the actual voltage x, follows the reference voltage,
Typers trajectory is now changed as the state-variables are modified. The new objective is

that the state variables py and p; follow their reference paths of pyy.r and payer, respectively,
such that:

k=1

(16)

Prref = 0.5 (L] Xipef” + LaXapef” + C1 Xa05” + C2 x-mf) (17)

2
Paref = EXypep — Kypep /R (18)
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where Xy, Xoyer, X3y p, and Xy, ¢ are the reference values of xy, x2, x3, and xy, respectively.
Since E.‘-"E]nf is the steady-state mput power of the converter, and assuming a lossless
converter, we can write:

P = x-qufz-"llﬂ (20)
E
Kiref = % (21)

where F; is the actual steady-state output power of the converter. Also, it is to be noted
that the disturbances #; and 4> are assumed to be bounded such that:

|6;(t)| < &; and < 5t (22)

where ¢; and 4;" are positive constants.

3.2, SM Scheme Based on Current through Input Inductor

Initially, an observer to estimate the disturbances in & and &3 is written as [27]:

b1 = Garpr + (23)

1= —Ga1(p2 + 1) (24)
and

b = Gaapz + 2 (23)

2 = —Gao(m + &2) (26)

where Gy and Gy; are the constant gains of an observer and a; and a7 are the auxiliary
gains of an observer. Using (23)+(26), we obtain:

€51 = —Gapgs + & (27)
Also: :
€53 = —Gizesn + &2 (28)
where ¢5; = §; — 41 and g5 = da — 4> are the errors in the estimation of two disturbances.

Next, considering the difficulty of measuring the actual output power, its estimation is
obtained as:

ﬁ' o x-irrf
B R

Now, dipef = H.m-_,rz,-" R, — H;m-_,rz,." R. Thus,

+ d1ref — &1 (29)

o Xaref
B, = dref _51 (30)

Substituting (30) in (17} and (19), and us-;inng (21}, the estimation of the reference values
of new state variables is obtained using:

!

2
] 1Ly Xarep™  : 1 1 1
o= — B S O Xt + —La X 2 L e Xyt 31
Birer 5 E ( R, 1 +2 1 Xarep” + 212 Dref +2 2 XK gref (31)

Advance In Intelligent And Computing (Volume - 742, Issue - 3, Sep - Dec 2025) Page No. 50



Parer = —01 (32)

where iy, ; is the estimation of py,,.¢ and py,. s is the estimation of pa,..
MNext, the form of the proposed SM controller for the regulation of the QB converter is
proposed as:

§ = cep +epy — Pryey (33)

where ¢p, = p1 — P1,er and €5, = p2 — fio,¢ are the errors in the new state variables p;
and p2, respectively, and ¢ is the constant gain. In order to satisfy the condition that ‘s
converges to zero, we obtain:

= _"(Em - .ﬁln'j) + Prrey — 81 — b2 — Kyysgn(s) — Kuas (34)
where K;; and K, are user-defined controller gains.

3.3. Global Stability Analysis

Next, the Lyapunov function is selected such that V(s) is positive definite and the

condition V{s) < 0 can be satisfied for certain values of the controller gains. We need V(s)
to be negative definite to prove the asymptotic stability. Thus, let us define the Lyapunov
function as given by (35).

Vis) = 152 (35)
2
Using (14) and (15), (27) and (28), and (32)-(34), we obtain:
s = ceg +eg — Kypsgn(s) — K8 (36)
Using (35) and (36), we obtain:
V(s) = s8 = s(ces, +eg, — Kyysgn(s) — Kips) (37)

Since s.sgn(s) = |s], we obtain:

V(s) = —Kp|s| — Kpos™ + s(ces, +e5,) (38)

Thus: _
F[S}I i: _Klll |5'| - Khlsz + |5|{':El‘lﬁ|m,|_._- + Edilml.\'} {-39:'
where ¢; = suple; (t)|,t > 0andie{1,2}. From (35), |s| = v2V1. Thus, (39) becomes:

V{S} E - ﬁv% [K[’] + Kl'zlsl - {celﬂhml.\' + E"-".im.l.v:,] {_-"-].-ﬂ]

Now, Vis) = 0, as long as (Kyy + Kpa|s|) = (ceq, .+ Eqa )

Thus, the QB converter controlled by the proposed SM controller is asymptotically
stable even when large parameter variations occur, if the controller gains are selected such
that (Kpy + Kyz|s|) = (ces,  +es, . ). Next, using s = 0 in (33), we obtain:

1nmx

Bpy = —Cep, + ra]n"f (41)
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Thus, using the definitions of ¢p, , ep,, and ¢35, and using (14), (32}, and ({41}, we obtain:
€p, = —Cep, + €51 (42)

Finally, the dynamics of the controlled system are stated by:
f = Me+ N& (43)

where ¢ = [é'PI 251 é'.:'iz] and & = [,-_'5'] :'5-1], and the matrices M and N, are given by:

—¢ 1 0 D0
M=|0 -Gy 0 |[andN= |1 D
0 0 -Gy D1

Here, M is the stability matrix of the system. A square matrix, M, is called a Hurwitz
matrix if all eigenvalues of M have strictly negative real parts, i.e., Re[Ai] < 0, where Ai
is the ith eigen value. Since all of the constants in the matrix M viz. ¢, G4, and G, are
positive constants and their coefficients are negative, the matrix M is a Hurwitz matrix.
The system is gl:‘.nl:lnallj,-r stable [28]. Also, since there exists an input-to-state system of the
form p = f(p, &) which is globally stable and also the input of which satisfies the condition
limd(t) =0, The system states satisfy the condition llm p[ ) = 0. Thus, the system errors

f—+iw

asymptotically converge such that 11I1"l-|’:'P| (t) =0, 11m eﬂ[ t} =0, and llm e‘,g.][ j =10
Discussions: The key Element in addr{-_"-..&.lng th{-_1 control of the pm]:lua.r-_'d system is

the eigenproblem. All negative coefficients in the stability matrix of the system dynamics

indicate that all of the real parts of the eigen values are in the left half of the plane. This

proves the bounded nature of the system as time approaches infinity. Such an eigenproblem

has been previously used to validate the stability of several control systems, as described
in [29-32].

4. Simulation Outcomes

In this section, some simulation outcomes are presented to validate the use of the
proposed control scheme to regulate the QB converter. The control scheme was realized in
MATLAB Simulink version 2022b. Figure 2 shows the block diagram of the control scheme’s
realization. The converter parameters used were: E = 10V, L; = 180 uH, L, = 180 uH,
Cy = 930 uF, C; = 930 uF, R = 100 (1, and Kypep = 40V, Also, the controller gains used
were: Gy = 100, Gy» = 100, ¢ = 8000, K; = 2000, and K;» = 500. Next, it is worth
mentioning that the proposed controller is based on the pulse width modulation-based
approach in which the control signal k is compared with a carrier sawtooth signal of fixed
frequency and the resulting PWM signal is generated using a comparator. The switching
frequency used was 100 KHz. The output PWM signal of a comparator then drives the
switch of the quadratic boost converter. The control input is the duty signal given by (16).

il
u! i rﬁlm El".
pa | QOB T | P "“‘““‘i}ﬂﬁmw —)@—) Prepased : el | | Ceatrl )
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‘Figure 2. Block diagram of the control scheme’s realization.

Initially, the effect of load disturbances on the output response was investigated.
Figure 3a shows the system’s response when the load was varied by 50% from R = 100 £}
to R = 150 {2 at time t = (.4 s, and then back to R = 100 {1 at t = 0.6 5. The response
in Figure 3a includes the response of the output voltage, the load current change, and a
zoomed version of the control signal. It can be observed that the output quickly reached
the reference voltage. The response has an overshoot of ~1% and settling time of ~0.01 s.
The ability of the converter to handle heavy load disturbances was also investigated and,
to this end, the load was changed from 100% of its nominal value. Figure 3b shows the
system’s response when the load was varied by 100% from R = 100 () to R = 200 £ at time
t = 0.8 5, and then back to R = 100 €} at t = 1 5. Again, the output settled to its reference
value with an overshoot of only ~1.2% and a settling time of ~0.02 s.
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Figure 3. Load-change response (output voltage response: middle; output current response: center;
zoomed control signal: bottom). (a) 50% variation in load from B = 100 {2 to B = 150 {1 at time
t=04 g, and then back to B = 100 £1 at t = 0.6 5; (b) 100%: variation in load from B = 100 {3 to
B =200 at time t =08 5, and then back to K = 1000 att =1 5.

MNext, the ability of the closed-loop system to handle the input voltage variations was

verified. First, the input battery voltage was changed by 20% from E = 10 Vto E = 12V at
t=1.2s, and then back to E = 10 V at t = 1.4 5. Figure 4a shows the converter’'s response

and the corresponding input voltage and control signal variables. Next, the supply was
changed by 50% from 10 V to 14 V at t = 1.6 s and then back to 10 V at t = 1.8 5. The response

is depicted in Figure 4b. As can be observed, the response settles to its nominal value in
~0.02 =,
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Figure 4. Line change response (output voltage response: middle; input voltage response: center;
zoomed control signal: bottom). (a) 20% change ininputfrom E = 10 Vio E =12V att=12sand
then back to £ = 10V at t = 1.4 5; (b) 50% change in input from 10 V to 14 V at t = 1.6 s and then back
tol0Vatt=18s

Lastly, the capacity of the propsoed SM-controlled system to handle reference voltage
variations was investigated. Figure 5 shows the converter's response, including the output

voltage, disturbance variable, and control signal variables when the reference volatge was
changed from Xygpep = 40V to Myrep = 45 Vatt =2 s and then Xy.p =50V att =225 All
of these results verify the converter’s ability to tightly regulate the output voltage to its
reference value.
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Figure 5. Reference voltage change response of the system when reference volatge was changed from
Kiper =30V o Xy.r =45 Vatt=2sand then X, =50 Vatt=22s.

5. Conclusions

In this article, a detailed design and analysis of a globally stable SM controller for
the high-step-up quadratic boost converter is presented. The detailed controller design,
including the derivation of the control signal, is presented. The proposed controller employs
observer variables of the disturbances which estimate the changes in the system’s power
and capacitor current. The main contribution of this paper is that the Lyapunov stability
criterion is employed to validate the large signal stability of the SM-controlled QB converter.
Also, the PWM-based 5M control scheme has been employed to avoid the chattering effect.
Finally, some simulation outcomes are shown to support the theoretical results. They
validate the abilitv of the proposed controller to handle the load, line, and reference voltage
variations. It is important to note that, while the suggested controller is used to control
a quadratic boost converter, it can also easily be implanted in other high-order de—dc
converters to control their output voltage.
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Appendix A

Here, the proofs of Equations (1)—(4) are presented for the “ON’ state of the QB
converter. In Figure 1b, applying KVL in the loop, including E, Ly, [, and closed switch 5,
we obtain: y 4

oo X3 x1 £
E—viy=E—Lig =0= 3= (A1)

where v is the voltage across inductor Ly, which is equal to L %}—'

Similarly, applyving K¥L in the loop, including . L, and closed switch S, we obtain:

dx dx x
x3—1=L2=13—L2m2=n=»d—f=L—i_ (A2)
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iy
dt -

Next, if the current through capacitor C; is assumed as i, which is equal to Gy %,
then:

where v} 5 is the voltage across inductor Ly, which is equal to Lz

: dxs dxs b}

B L SO . A3

L TR A T et

Similarly, if the current through capacitor Cz is assumed as ic;, which is equal to E'.._r%*,

then: g ;

_ Xy X4 X4 14 X4

- = bt B — = Ad

CETRTH TR @ T ORG i

Equations (Al1)}-(A4) prove Equations (1)-(4), respectively.

Appendix B

Here, the proofs of Equations (5)—(8) are presented for the ‘OFF’ state of the QB
converter. In Figure 1c, applying KVL in the loop, including E, Ly, and C;, we obtain:
I:?III] ﬂII] E— X3

E— - =[=EFE-[li— -3 =0= — = i AR
Tl — X3 1= — %3 5 P (AS5)

Also, applying KVL in the loop including €y, Lz, and Gz, we obtain:

dxz dxa X3 — X4
¥3—Ua—y=x3—Lr——x3=0= — .

dt it I kel

Next, if the current through capacitor C; is assumed as i), which is equal to Cy “:'—;1,
then:

dx3 dxs  dxy x1—1x,
1 — —_ £ C —_— —_— £ — — . ﬂ
icy = X1 — X2 1~ SHh—B = — T o (A7)
Similarly, if the current through capacitor Cz is assumed as ic;, which is equal to E'.._r%*,
then: ! 4
P X4 Xy X4 X4 X3 X4
ica=x1——=20—=n——= — = — — —. AR
=0 POy =22 % TG RG (A%)
Equations (A5)-(AS8) prove Equations (5)-(8), respectively.
Appendix C
The transformed system’s first state variable is given as:
P =ﬂ.5(leF+L2x22+c1x32+czxf) (A9)
Taking first derivative of (A9), we obtain:
Py = Lyxpxy + Laxaxs + Cyxaxa + Caxgxy (A1)
Substituting (1)—(4) in (A10), we obtain:
. 1
pr=x1(—(1 —k)xs+ E) + x2(—(1 = kjxy + x3) + x3({1 — k)x; — x5 +I4({1 —k)x2 — E-‘q) (Al1)

Simplifying (A11), we obtain:
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p = Ex; — = (A12)

PL=pa+ o — . (A13)

a3
& . i X X .
MNow, if disturbance variable 8, = 'R*T — . we obtain:

P1 = P2 +d1 (Ald)
Next, from py = Ex) — x3%/ K, as defined in (A12), we obtain:

P = Exg —2;—4:%4 (A15)

Substituting (1) and (4) in (A15) we obtain:

. 1 1 vy 1 1
p:—E(—L—]{l—HIg+L—]E)— R_D(C_g“_k}”_ﬁch*) (A16)
Solving (Al6), we obtain:
P-E = m +1§2 {Al?}l

where m = EX/L; + 11'42,.-’!3,_,!:2 — (Ex3/Ly 4 2x0x3 /R, C2)i1 — k) and &2 = (2/R,C3)
(—x42 /Ry + 142/ R).
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